References
- V.H. Smith, G.D. Tilman, J.C. Nekola, Eutrophication: impacts
of excess nutrient inputs on freshwater, marine, and terrestrial
ecosystems, Environ. Pollut., 100 (1999) 179–196.
- W.J. Oswald, My sixty years in applied algology, J. Appl.
Phycol., 15 (2003) 99–106.
- W.Z. Zhou, Z.M. Wang, J.L. Xu, L.L. Ma, Cultivation of
microalgae Chlorella zofingiensis on municipal wastewater and
biogas slurry towards bioenergy, J. Biosci. Bioeng., 126 (2018)
644–648.
- J.T. da Fontoura, G.S. Rolim, M. Farenzena, M. Gutterres,
Influence of light intensity and tannery wastewater
concentration on biomass production and nutrient removal
by microalgae Scenedesmus sp., Process Saf. Environ. Prot.,
111 (2017) 355–362.
- E.B. Sydney, T.E. da Silva, A. Tokarski, A.C. Novak, J.C. de
Carvalho, A.L. Woiciecohwski, C. Larroche, C.R. Soccol,
Screening of microalgae with potential for biodiesel production
and nutrient removal from treated domestic sewage, Appl.
Energy, 88 (2011) 3291–3294.
- J.P. Lv, Y. Liu, J. Feng, Q. Liu, F.R. Nan, S.L. Xie, Nutrients
removal from undiluted cattle farm wastewater by the twostage
process of microalgae-based wastewater treatment,
Bioresour. Technol., 264 (2018) 311–318.
- Z. Reyimu, D. Özçimen, Batch cultivation of marine microalgae
Nannochloropsis oculata and Tetraselmis suecica in treated
municipal wastewater toward bioethanol production, J. Cleaner
Prod., 150 (2017) 40–46.
- J. Coppens, O. Grunert, S. Van Den Hende, I. Vanhoutte,
N. Boon, G. Haesaert, L. De Gelder, The use of microalgae as
a high-value organic slow-release fertilizer results in tomatoes
with increased carotenoid and sugar levels, J. Appl. Phycol.,
28 (2016) 2367–2377.
- K. Skjånes, C. Rebours, P. Lindblad, Potential for green
microalgae to produce hydrogen, pharmaceuticals and
other high value products in a combined process, Crit. Rev.
Biotechnol., 33 (2013) 172–215.
- J. Cheng, J. Xu, Y. Huang, Y.Y. Li, J.H. Zhou, K. Cen, Growth
optimisation of microalga mutant at high CO2 concentration
to purify undiluted anaerobic digestion effluent of swine
manure, Bioresour. Technol., 177 (2015) 240–246.
- C. González-Fernández, B. Molinuevo-Salces, M.C. García-González, Evaluation of anaerobic codigestion of microalgal
biomass and swine manure via response surface methodology,
Appl. Energy, 88 (2011) 3448–3453.
- E. Sanz-Luque, A. Chamizo-Ampudia, A. Llamas, A. Galvan,
E. Fernandez, Understanding nitrate assimilation and its
regulation in microalgae, Front. Plant Sci., 6 (2015) 899.
- M. Martínez Sancho, J.M. Jiménez Castillo, F. El Yousfi,
Influence of phosphorus concentration on the growth kinetics
and stoichiometry of the microalga Scenedesmus obliquus,
Process Biochem., 32 (1997) 657–664.
- L. Luo, H.J. He, C.P. Yang, S. Wen, G.M. Zeng, M.J. Wu, Z. Zhou,
W. Lou, Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater,
Bioresour. Technol., 216 (2016) 135–141.
- G. Torzillo, B. Pushparaj, J. Masojidek, A. Vonshak, Biological
constraints in algal biotechnology, Biotechnol. Bioprocess Eng.,
8 (2003) 338–348.
- A. Raheem, P. Prinsen, A.K. Vuppaladadiyam, M. Zhao,
R. Luque, A review on sustainable microalgae based biofuel
and bioenergy production: recent developments, J. Cleaner
Prod., 181 (2018) 42–59.
- A. Richmond, Biological Principles of Mass Cultivation of
Photoautotrophic Microalgae, A. Richmond, Emeritus, Q. Hu,
Eds., Handbook of Microalgal Culture: Applied Phycology
and Biotechnology, Wiley, Chichester, 2004, pp. 125–177.
- L. Xin, H. Hong-ying, Z. Yu-ping, Growth and lipid
accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature, Bioresour. Technol.,
102 (2011) 3098–3102.
- A. Converti, A.A. Casazza, E.Y. Ortiz, P. Perego, M. Del Borghi,
Effect of temperature and nitrogen concentration on the growth
and lipid content of Nannochloropsis oculata and Chlorella
vulgaris for biodiesel production, Chem. Eng. Process., 48 (2009)
1146–1151.
- Z.J. Liang, Y. Liu, F. Ge, Y. Xu, N.G. Tao, F. Peng, M.H. Wong,
Efficiency assessment and pH effect in removing nitrogen and
phosphorus by algae-bacteria combined system of Chlorella
vulgaris and Bacillus licheniformis, Chemosphere, 92 (2013)
1383–1389.
- B. George, I. Pancha, C. Desai, K. Chokshi, C. Paliwal, T. Ghosh,
S. Mishra, Effects of different media composition, light intensity
and photoperiod on morphology and physiology of freshwater
microalgae Ankistrodesmus falcatus – a potential strain for
bio-fuel production, Bioresour. Technol., 171 (2014) 367–374.
- B. Kiran, K. Pathak, R. Kumar, D. Deshmukh, Statistical
optimization using central composite design for biomass and
lipid productivity of microalga: a step towards enhanced
biodiesel production, Ecol. Eng., 92 (2016) 73–81.
- S. Dayana Priyadharshini, A.K. Bakthavatsalam, Optimization
of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett–Burman design and response surface
methodology, Bioresour. Technol., 207 (2016) 150–156.
- Y. Nagata, K.H. Chu, Optimization of a fermentation medium
using neural networks and genetic algorithms, Biotechnol.
Lett., 25 (2003) 1837–1842.
- A. Banerjee, C. Guria, S.K. Maiti, Fertilizer assisted optimal
cultivation of microalgae using response surface method and
genetic algorithm for biofuel feedstock, Energy, 115 (2016)
1272–1290.
- C.S. Rao, T. Sathish, B. Pendyala, T.P. Kumar, R.S. Prakasham,
Development of a mathematical model for Bacillus circulans growth and alkaline protease production kinetics, J. Chem.
Technol. Biotechnol., 84 (2009) 302–307.
- Q.T. Gong, Y.Z. Feng, L.G. Kang, M.Y. Luo, J.H. Yang, Effects
of light and pH on cell density of Chlorella vulgaris, Energy
Procedia, 61 (2014) 2012–2015.
- A.E. Greenberg, L.S. Clesceri, A.D. Eaton, Standard Methods
for the Examination of Water and Wastewater, American Public
Health Association, Washington, D.C., 1992.
- J. Akhtar, S. Mishra, D. Tiwary, A. Ohri, A.K. Agnihotri,
Assessment of water quality of River Assi by using WQI,
Varanasi, India, Int. J. Environ. Sustainability, 7 (2018) 114–121.
- WHO, Water Safety and Quality, World Health Organization,
Geneva, 2018.
- BIS, Indian Standards Drinking Water Specifications IS
10500:2012, Bureau of Indian Standards, New Delhi, 2012, p. 11.
- C.M. Zhang, Y.L. Zhang, B.L. Zhuang, X.F. Zhou, Strategic
enhancement of algal biomass, nutrient uptake and lipid
through statistical optimization of nutrient supplementation in
coupling Scenedesmus obliquus-like microalgae cultivation and
municipal wastewater treatment, Bioresour. Technol., 171 (2014)
71–79.
- A.A.H. Khalid, Z. Yaakob, S.R.S. Abdullah, M.S. Takriff,
Analysis of the elemental composition and uptake mechanism
of Chlorella sorokiniana for nutrient removal in agricultural
wastewater under optimized response surface methodology
(RSM) conditions, J. Cleaner Prod., 210 (2019) 673–686.
- M.B. Sabeti, M.A. Hejazi, A. Karimi, Enhanced removal of
nitrate and phosphate from wastewater by Chlorella vulgaris:
multi-objective optimization and CFD simulation, Chin. J.
Chem., 27 (2019) 639–648.
- T. Murwanashyaka, L. Shen, J.D. Ndayambaje, Y.P. Wang,
N. He, Y.H. Lu, Kinetic and transcriptional exploration of
Chlorella sorokiniana in heterotrophic cultivation for nutrients
removal from wastewaters, Algal Res., 24 (2017) 467–476.
- M. Khavarpour, G.D. Najafpour, A.A. Ghoreyshi, M. Jahanshahi,
B. Bambai, Biodesulfurization of natural gas: growth kinetic
evaluation, Middle-East J. Sci. Res., 7 (2011) 22–29.
- J.S. Yang, E. Rasa, P. Tantayotai, K.M. Scow, H.L. Yuan,
K.R. Hristova, Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic
fermentation conditions, Bioresour. Technol.,
102 (2011) 3077–3082.
- D. Surendhiran, M. Vijay, B. Sivaprakash, A. Sirajunnisa,
Kinetic modeling of microalgal growth and lipid synthesis for
biodiesel production, 3 Biotech, 5 (2015) 663–669.
- K.M.C. Tjørve, E. Tjørve, The use of Gompertz models in growth
analyses, and new Gompertz-model approach: an addition
to the Unified-Richards family, PLoS One, 12 (2017) 1–17.
- M.H. Zwietering, I. Jongenburger, F.M. Rombouts, K. Van’t
Riet, Modeling of the bacterial growth curve, Appl. Environ.
Microbiol., 56 (1990) 1875–1881.
- A. Çelekli, M. Balcı, H. Bozkurt, Modelling of Scenedesmus
obliquus; function of nutrients with modified Gompertz model,
Bioresour. Technol., 99 (2008) 8742–8747.
- A.L. Gonçalves, J.C.M. Pires, M. Simões, Biotechnological
potential of Synechocystis salina co-cultures with selected
microalgae and cyanobacteria: nutrients removal, biomass and
lipid production, Bioresour. Technol., 200 (2016) 279–286.
- J. Ruiz, Z. Arbib, P.D. Alvarez-Díaz, C. Garrido-Pérez,
J. Barragán, J.A. Perales, Photobiotreatment model (PhBT): a
kinetic model for microalgae biomass growth and nutrient
removal in wastewater, Environ. Technol., 34 (2013) 979–991.
- M.L. Shuler, F. Kargi, Bioprocess Engineering: Basic Concepts,
2nd ed., Prentice Hall, New Jersey, 1991.
- F. Li, C. Chang, Q. Zhang, J. Bai, S.Q. Fang, Cultivation of
Chlorella mutant in cellulosic ethanol wastewater using a static
mixing airlift photo-bioreactor for simultaneous wastewater
treatment, Environ. Prog. Sustainable Energy, 36 (2017)
1274–1281.
- H. Bozdogan, Model selection and Akaike’s Information
Criterion (AIC): the general theory and its analytical extensions,
Psychometrika, 52 (1987) 345–370.
- C.-Y. Chen, E.-W. Kuo, D. Nagarajan, S.-H. Ho, C.-D. Dong,
D.-J. Lee, J.-S. Chang, Cultivating Chlorella sorokiniana AK-1
with swine wastewater for simultaneous wastewater treatment
and algal biomass production, Bioresour. Technol., 302 (2020)
122814.
- J.C. Goldman, Temperature effects on phytoplankton
growth in continuous culture, Limnol. Oceanogr., 22 (1977)
932–936.
- E. Bitaubé Pérez, I. Caro Pina, L. Pérez Rodríguez, Kinetic
model for growth of Phaeodactylum tricornutum in intensive
culture photobioreactor, Biochem. Eng. J., 40 (2008) 520–525
- D.P. Maxwell, S. Falk, C.G. Trick, N.P.A. Huner, Growth at low
temperature mimics high-light acclimation in Chlorella vulgaris,
Plant Physiol., 105 (1994) 535–543.
- A. Konopka, T.D. Brock, Effect of temperature on blue-green
algae (Cyanobacteria) in Lake Mendota, Appl. Environ.
Microbiol., 36 (1978) 572–576.
- W.-Y. Choi, S.-H. Oh, C.-G. Lee, Y.-C. Seo, C.-H. Song,
J.-S. Kim, Enhancement of the growth of marine microalga
Chlorella sp. from mixotrophic perfusion cultivation for biodiesel
production, Chem. Biochem. Eng. Q., 26 (2012) 207–216.
- G.-J. Yang, Z.Q. Luan, X.-H. Zhou, Y. Mei, The researching
of the effect of temperature on Chlorella growth and content
of dissolved oxygen and content of chlorophyll, Math. Phys.
Fish. Sci., 8 (2010) 68–74.
- J. Zhai, X.T. Li, W. Li, H. Rahaman, Y.T. Zhao, B. Wei, H.X. Wei,
Optimization of biomass production and nutrients removal
by Spirulina platensis from municipal wastewater, Ecol. Eng.,
108 (2017) 83–92.
- W.D. Kim, J.M. Park, G.H. Gim, S.-H. Jeong, C.M. Kang,
D.-J. Kim, S.W. Kim, Optimization of culture conditions and
comparison of biomass productivity of three green algae,
Bioprocess. Biosyst. Eng., 35 (2012) 19–27.
- G. Markou, D. Georgakakis, Cultivation of filamentous
cyanobacteria (blue-green algae) in agro-industrial wastes and
wastewaters: a review, Appl. Energy, 88 (2011) 3389–3401.
- A.L. Gonçalves, J.C.M. Pires, M. Simões, A review on the use
of microalgal consortia for wastewater treatment, Algal Res.,
24 (2017) 403–415.
- R. Sayre, Microalgae: the potential for carbon capture,
Bioscience, 60 (2010) 722–727.
- M.C. Picardo, J.L. de Medeiros, O. de Queiroz F. Araújo,
R.M. Chaloub, Effects of CO2 enrichment and nutrients supply
intermittency on batch cultures of Isochrysis galbana, Bioresour.
Technol., 143 (2013) 242–250.
- E.B. Sydney, A.C. Novak, J.C. de Carvalho, C.R. Soccol,
Chapter 4 – Respirometric Balance and Carbon Fixation of
Industrially Important Algae, A. Pandey, D.-J. Lee, Y. Chisti,
C.R. Soccol, Eds., Biofuels from Algae, Elsevier, Amsterdam,
2014, pp. 67–84.
- C.Y. Chen, E.G. Durbin, Effects of pH on the growth and
carbon uptake of marine phytoplankton, Mar. Ecol. Prog. Ser.,
3755 (1994) 83–94.
- I. Krzemińska, B. Pawlik-Skowrońska, M. Trzcińska, J. Tys,
Influence of photoperiods on the growth rate and biomass
productivity of green microalgae, Bioprocess. Biosyst. Eng.,
37 (2014) 735–741.
- R. Bouterfas, M. Belkoura, A. Dauta, The effects of irradiance
and photoperiod on the growth rate of three freshwater green
algae isolated from a eutrophic lake, Limnetica, 25 (2006)
647–656.
- L. Delgadillo-mirquez, F. Lopes, B. Taidi, D. Pareau, Nitrogen
and phosphate removal from wastewater with a mixed
microalgae and bacteria culture, Biotechnol. Rep., 11 (2016)
18–26.
- K. Larsdotter, J. La Cour Jansen, G. Dalhammar, Biologically
mediated phosphorus precipitation in wastewater treatment
with microalgae, Environ. Technol., 28 (2007) 953–960.
- F.Z. Mennaa, Z. Arbib, J.A. Perales, Urban wastewater
treatment
by seven species of microalgae and an algal
bloom: biomass production, N and P removal kinetics and
harvestability, Water Res., 83 (2015) 42–51.
- Y.-R. Lee, J.-J. Chen, Optimization of simultaneous biomass
production and nutrient removal by mixotrophic Chlorella sp. using response surface methodology, Water Sci. Technol.,
73 (2016) 1520–1531.
- M.A.M. Mirzaie, M. Kalbasi, B. Ghobadian, S.M. Mousavi,
Kinetic modeling of mixotrophic growth of Chlorella vulgaris as a new feedstock for biolubricant, J. Appl. Phycol., 28 (2016)
2707–2717.
- K. Gaurav, R. Srivastava, J.G. Sharma, R. Singh, V. Singh,
Molasses-based growth and lipid production by Chlorella
pyrenoidosa: a potential feedstock for biodiesel, Int. J. Green
Energy, 13 (2016) 320–327.