References

  1. V.H. Smith, G.D. Tilman, J.C. Nekola, Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems, Environ. Pollut., 100 (1999) 179–196.
  2. W.J. Oswald, My sixty years in applied algology, J. Appl. Phycol., 15 (2003) 99–106.
  3. W.Z. Zhou, Z.M. Wang, J.L. Xu, L.L. Ma, Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy, J. Biosci. Bioeng., 126 (2018) 644–648.
  4. J.T. da Fontoura, G.S. Rolim, M. Farenzena, M. Gutterres, Influence of light intensity and tannery wastewater concentration on biomass production and nutrient removal by microalgae Scenedesmus sp., Process Saf. Environ. Prot., 111 (2017) 355–362.
  5. E.B. Sydney, T.E. da Silva, A. Tokarski, A.C. Novak, J.C. de Carvalho, A.L. Woiciecohwski, C. Larroche, C.R. Soccol, Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage, Appl. Energy, 88 (2011) 3291–3294.
  6. J.P. Lv, Y. Liu, J. Feng, Q. Liu, F.R. Nan, S.L. Xie, Nutrients removal from undiluted cattle farm wastewater by the twostage process of microalgae-based wastewater treatment, Bioresour. Technol., 264 (2018) 311–318.
  7. Z. Reyimu, D. Özçimen, Batch cultivation of marine microalgae Nannochloropsis oculata and Tetraselmis suecica in treated municipal wastewater toward bioethanol production, J. Cleaner Prod., 150 (2017) 40–46.
  8. J. Coppens, O. Grunert, S. Van Den Hende, I. Vanhoutte, N. Boon, G. Haesaert, L. De Gelder, The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels, J. Appl. Phycol., 28 (2016) 2367–2377.
  9. K. Skjånes, C. Rebours, P. Lindblad, Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process, Crit. Rev. Biotechnol., 33 (2013) 172–215.
  10. J. Cheng, J. Xu, Y. Huang, Y.Y. Li, J.H. Zhou, K. Cen, Growth optimisation of microalga mutant at high CO2 concentration to purify undiluted anaerobic digestion effluent of swine manure, Bioresour. Technol., 177 (2015) 240–246.
  11. C. González-Fernández, B. Molinuevo-Salces, M.C. García-González, Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology, Appl. Energy, 88 (2011) 3448–3453.
  12. E. Sanz-Luque, A. Chamizo-Ampudia, A. Llamas, A. Galvan, E. Fernandez, Understanding nitrate assimilation and its regulation in microalgae, Front. Plant Sci., 6 (2015) 899.
  13. M. Martínez Sancho, J.M. Jiménez Castillo, F. El Yousfi, Influence of phosphorus concentration on the growth kinetics and stoichiometry of the microalga Scenedesmus obliquus, Process Biochem., 32 (1997) 657–664.
  14. L. Luo, H.J. He, C.P. Yang, S. Wen, G.M. Zeng, M.J. Wu, Z. Zhou, W. Lou, Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater, Bioresour. Technol., 216 (2016) 135–141.
  15. G. Torzillo, B. Pushparaj, J. Masojidek, A. Vonshak, Biological constraints in algal biotechnology, Biotechnol. Bioprocess Eng., 8 (2003) 338–348.
  16. A. Raheem, P. Prinsen, A.K. Vuppaladadiyam, M. Zhao, R. Luque, A review on sustainable microalgae based biofuel and bioenergy production: recent developments, J. Cleaner Prod., 181 (2018) 42–59.
  17. A. Richmond, Biological Principles of Mass Cultivation of Photoautotrophic Microalgae, A. Richmond, Emeritus, Q. Hu, Eds., Handbook of Microalgal Culture: Applied Phycology and Biotechnology, Wiley, Chichester, 2004, pp. 125–177.
  18. L. Xin, H. Hong-ying, Z. Yu-ping, Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature, Bioresour. Technol., 102 (2011) 3098–3102.
  19. A. Converti, A.A. Casazza, E.Y. Ortiz, P. Perego, M. Del Borghi, Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production, Chem. Eng. Process., 48 (2009) 1146–1151.
  20. Z.J. Liang, Y. Liu, F. Ge, Y. Xu, N.G. Tao, F. Peng, M.H. Wong, Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis, Chemosphere, 92 (2013) 1383–1389.
  21. B. George, I. Pancha, C. Desai, K. Chokshi, C. Paliwal, T. Ghosh, S. Mishra, Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus – a potential strain for bio-fuel production, Bioresour. Technol., 171 (2014) 367–374.
  22. B. Kiran, K. Pathak, R. Kumar, D. Deshmukh, Statistical optimization using central composite design for biomass and lipid productivity of microalga: a step towards enhanced biodiesel production, Ecol. Eng., 92 (2016) 73–81.
  23. S. Dayana Priyadharshini, A.K. Bakthavatsalam, Optimization of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett–Burman design and response surface methodology, Bioresour. Technol., 207 (2016) 150–156.
  24. Y. Nagata, K.H. Chu, Optimization of a fermentation medium using neural networks and genetic algorithms, Biotechnol. Lett., 25 (2003) 1837–1842.
  25. A. Banerjee, C. Guria, S.K. Maiti, Fertilizer assisted optimal cultivation of microalgae using response surface method and genetic algorithm for biofuel feedstock, Energy, 115 (2016) 1272–1290.
  26. C.S. Rao, T. Sathish, B. Pendyala, T.P. Kumar, R.S. Prakasham, Development of a mathematical model for Bacillus circulans growth and alkaline protease production kinetics, J. Chem. Technol. Biotechnol., 84 (2009) 302–307.
  27. Q.T. Gong, Y.Z. Feng, L.G. Kang, M.Y. Luo, J.H. Yang, Effects of light and pH on cell density of Chlorella vulgaris, Energy Procedia, 61 (2014) 2012–2015.
  28. A.E. Greenberg, L.S. Clesceri, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C., 1992.
  29. J. Akhtar, S. Mishra, D. Tiwary, A. Ohri, A.K. Agnihotri, Assessment of water quality of River Assi by using WQI, Varanasi, India, Int. J. Environ. Sustainability, 7 (2018) 114–121.
  30. WHO, Water Safety and Quality, World Health Organization, Geneva, 2018.
  31. BIS, Indian Standards Drinking Water Specifications IS 10500:2012, Bureau of Indian Standards, New Delhi, 2012, p. 11.
  32. C.M. Zhang, Y.L. Zhang, B.L. Zhuang, X.F. Zhou, Strategic enhancement of algal biomass, nutrient uptake and lipid through statistical optimization of nutrient supplementation in coupling Scenedesmus obliquus-like microalgae cultivation and municipal wastewater treatment, Bioresour. Technol., 171 (2014) 71–79.
  33. A.A.H. Khalid, Z. Yaakob, S.R.S. Abdullah, M.S. Takriff, Analysis of the elemental composition and uptake mechanism of Chlorella sorokiniana for nutrient removal in agricultural wastewater under optimized response surface methodology (RSM) conditions, J. Cleaner Prod., 210 (2019) 673–686.
  34. M.B. Sabeti, M.A. Hejazi, A. Karimi, Enhanced removal of nitrate and phosphate from wastewater by Chlorella vulgaris: multi-objective optimization and CFD simulation, Chin. J. Chem., 27 (2019) 639–648.
  35. T. Murwanashyaka, L. Shen, J.D. Ndayambaje, Y.P. Wang, N. He, Y.H. Lu, Kinetic and transcriptional exploration of Chlorella sorokiniana in heterotrophic cultivation for nutrients removal from wastewaters, Algal Res., 24 (2017) 467–476.
  36. M. Khavarpour, G.D. Najafpour, A.A. Ghoreyshi, M. Jahanshahi, B. Bambai, Biodesulfurization of natural gas: growth kinetic evaluation, Middle-East J. Sci. Res., 7 (2011) 22–29.
  37. J.S. Yang, E. Rasa, P. Tantayotai, K.M. Scow, H.L. Yuan, K.R. Hristova, Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions, Bioresour. Technol., 102 (2011) 3077–3082.
  38. D. Surendhiran, M. Vijay, B. Sivaprakash, A. Sirajunnisa, Kinetic modeling of microalgal growth and lipid synthesis for biodiesel production, 3 Biotech, 5 (2015) 663–669.
  39. K.M.C. Tjørve, E. Tjørve, The use of Gompertz models in growth analyses, and new Gompertz-model approach: an addition to the Unified-Richards family, PLoS One, 12 (2017) 1–17.
  40. M.H. Zwietering, I. Jongenburger, F.M. Rombouts, K. Van’t Riet, Modeling of the bacterial growth curve, Appl. Environ. Microbiol., 56 (1990) 1875–1881.
  41. A. Çelekli, M. Balcı, H. Bozkurt, Modelling of Scenedesmus obliquus; function of nutrients with modified Gompertz model, Bioresour. Technol., 99 (2008) 8742–8747.
  42. A.L. Gonçalves, J.C.M. Pires, M. Simões, Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: nutrients removal, biomass and lipid production, Bioresour. Technol., 200 (2016) 279–286.
  43. J. Ruiz, Z. Arbib, P.D. Alvarez-Díaz, C. Garrido-Pérez, J. Barragán, J.A. Perales, Photobiotreatment model (PhBT): a kinetic model for microalgae biomass growth and nutrient removal in wastewater, Environ. Technol., 34 (2013) 979–991.
  44. M.L. Shuler, F. Kargi, Bioprocess Engineering: Basic Concepts, 2nd ed., Prentice Hall, New Jersey, 1991.
  45. F. Li, C. Chang, Q. Zhang, J. Bai, S.Q. Fang, Cultivation of Chlorella mutant in cellulosic ethanol wastewater using a static mixing airlift photo-bioreactor for simultaneous wastewater treatment, Environ. Prog. Sustainable Energy, 36 (2017) 1274–1281.
  46. H. Bozdogan, Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions, Psychometrika, 52 (1987) 345–370.
  47. C.-Y. Chen, E.-W. Kuo, D. Nagarajan, S.-H. Ho, C.-D. Dong, D.-J. Lee, J.-S. Chang, Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production, Bioresour. Technol., 302 (2020) 122814.
  48. J.C. Goldman, Temperature effects on phytoplankton growth in continuous culture, Limnol. Oceanogr., 22 (1977) 932–936.
  49. E. Bitaubé Pérez, I. Caro Pina, L. Pérez Rodríguez, Kinetic model for growth of Phaeodactylum tricornutum in intensive culture photobioreactor, Biochem. Eng. J., 40 (2008) 520–525
  50. D.P. Maxwell, S. Falk, C.G. Trick, N.P.A. Huner, Growth at low temperature mimics high-light acclimation in Chlorella vulgaris, Plant Physiol., 105 (1994) 535–543.
  51. A. Konopka, T.D. Brock, Effect of temperature on blue-green algae (Cyanobacteria) in Lake Mendota, Appl. Environ. Microbiol., 36 (1978) 572–576.
  52. W.-Y. Choi, S.-H. Oh, C.-G. Lee, Y.-C. Seo, C.-H. Song, J.-S. Kim, Enhancement of the growth of marine microalga Chlorella sp. from mixotrophic perfusion cultivation for biodiesel production, Chem. Biochem. Eng. Q., 26 (2012) 207–216.
  53. G.-J. Yang, Z.Q. Luan, X.-H. Zhou, Y. Mei, The researching of the effect of temperature on Chlorella growth and content of dissolved oxygen and content of chlorophyll, Math. Phys. Fish. Sci., 8 (2010) 68–74.
  54. J. Zhai, X.T. Li, W. Li, H. Rahaman, Y.T. Zhao, B. Wei, H.X. Wei, Optimization of biomass production and nutrients removal by Spirulina platensis from municipal wastewater, Ecol. Eng., 108 (2017) 83–92.
  55. W.D. Kim, J.M. Park, G.H. Gim, S.-H. Jeong, C.M. Kang, D.-J. Kim, S.W. Kim, Optimization of culture conditions and comparison of biomass productivity of three green algae, Bioprocess. Biosyst. Eng., 35 (2012) 19–27.
  56. G. Markou, D. Georgakakis, Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review, Appl. Energy, 88 (2011) 3389–3401.
  57. A.L. Gonçalves, J.C.M. Pires, M. Simões, A review on the use of microalgal consortia for wastewater treatment, Algal Res., 24 (2017) 403–415.
  58. R. Sayre, Microalgae: the potential for carbon capture, Bioscience, 60 (2010) 722–727.
  59. M.C. Picardo, J.L. de Medeiros, O. de Queiroz F. Araújo, R.M. Chaloub, Effects of CO2 enrichment and nutrients supply intermittency on batch cultures of Isochrysis galbana, Bioresour. Technol., 143 (2013) 242–250.
  60. E.B. Sydney, A.C. Novak, J.C. de Carvalho, C.R. Soccol, Chapter 4 – Respirometric Balance and Carbon Fixation of Industrially Important Algae, A. Pandey, D.-J. Lee, Y. Chisti, C.R. Soccol, Eds., Biofuels from Algae, Elsevier, Amsterdam, 2014, pp. 67–84.
  61. C.Y. Chen, E.G. Durbin, Effects of pH on the growth and carbon uptake of marine phytoplankton, Mar. Ecol. Prog. Ser., 3755 (1994) 83–94.
  62. I. Krzemińska, B. Pawlik-Skowrońska, M. Trzcińska, J. Tys, Influence of photoperiods on the growth rate and biomass productivity of green microalgae, Bioprocess. Biosyst. Eng., 37 (2014) 735–741.
  63. R. Bouterfas, M. Belkoura, A. Dauta, The effects of irradiance and photoperiod on the growth rate of three freshwater green algae isolated from a eutrophic lake, Limnetica, 25 (2006) 647–656.
  64. L. Delgadillo-mirquez, F. Lopes, B. Taidi, D. Pareau, Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture, Biotechnol. Rep., 11 (2016) 18–26.
  65. K. Larsdotter, J. La Cour Jansen, G. Dalhammar, Biologically mediated phosphorus precipitation in wastewater treatment with microalgae, Environ. Technol., 28 (2007) 953–960.
  66. F.Z. Mennaa, Z. Arbib, J.A. Perales, Urban wastewater treatment by seven species of microalgae and an algal bloom: biomass production, N and P removal kinetics and harvestability, Water Res., 83 (2015) 42–51.
  67. Y.-R. Lee, J.-J. Chen, Optimization of simultaneous biomass production and nutrient removal by mixotrophic Chlorella sp. using response surface methodology, Water Sci. Technol., 73 (2016) 1520–1531.
  68. M.A.M. Mirzaie, M. Kalbasi, B. Ghobadian, S.M. Mousavi, Kinetic modeling of mixotrophic growth of Chlorella vulgaris as a new feedstock for biolubricant, J. Appl. Phycol., 28 (2016) 2707–2717.
  69. K. Gaurav, R. Srivastava, J.G. Sharma, R. Singh, V. Singh, Molasses-based growth and lipid production by Chlorella pyrenoidosa: a potential feedstock for biodiesel, Int. J. Green Energy, 13 (2016) 320–327.