References

  1. A. Sarkar, B. Paul, The global menace of arsenic and its conventional remediation – a critical review, Chemosphere, 173 (2017) 630–631.
  2. I. Ali, Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: batch and column operations, J. Mol. Liq., 271 (2018) 677–685.
  3. H.R. Nodeh, W.A.W. Ibrahim, I. Ali, M.M. Sanagi, Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As(III) and As(V) species from environmental water samples, Environ. Sci. Pollut. Res., 23 (2016) 9759–9773.
  4. C.K. Jain, I. Ali, Arsenic: occurrence, toxicity and speciation techniques, Water Res., 34 (2000) 4304–4312.
  5. EPA, National Primary Drinking Water Regulations, Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring, Federal Register, 66:6976–7066, Washington, DC, 2001.
  6. N. Abdullah, N. Yusof, W.J. Lau, J. Jaafar, A.F. Ismail, Recent trends of heavy metal removal from water/wastewater by membrane technologies, J. Ind. Eng. Chem., 76 (2019) 17–38.
  7. M. Yaqub, B. Eren, V. Eyupoglu, Soft computing techniques in prediction Cr(VI) removal efficiency of polymer inclusion membranes, Environ. Eng. Res., 25 (2019) 418–425.
  8. I. Ali, O.M.L. Alharbi, A. Tkachev, E. Galunin, A. Burakov, V.A. Grachev, Water treatment by new-generation graphene materials: hope for bright future, Environ. Sci. Pollut. Res., 25 (2018) 7315–7329.
  9. I. Ali, Z.A. Al-Othman, A. Alwarthan, M. Asim, T.A. Khan, Removal of arsenic species from water by batch and column operations on bagasse fly ash, Environ. Sci. Pollut. Res., 21 (2014) 3218–3229.
  10. I. Ali, V.K. Gupta, T.A. Khan, M. Asim, Removal of arsenate from aqueous solution by electro-coagulation method using Al–Fe electrodes, Int. J. Electrochem. Sci., 7 (2012) 1898–1907.
  11. I. Ali, T.A. Khan, M. Asim, Removal of arsenic from water by electrocoagulation and electrodialysis techniques, Sep. Purif. Rev., 40 (2011) 25–42.
  12. I. Ali, H.Y. Aboul-Enein, Speciation of arsenic and chromium metal ions by reversed phase high performance liquid chromatography, Chemosphere, 48 (2002) 275–278.
  13. E. Ramé, Encyclopedia of Surface and Colloid Science, Marcel Dekker, New York, NY, 2002.
  14. M. Yaqub, S.H. Lee, Heavy metals removal from aqueous solution through micellar enhanced ultrafiltration: a review, Environ. Eng. Res., 24 (2018) 363–375.
  15. R.F. Rafique, Z. Min, G. Son, S.H. Lee, Removal of cadmium ion using micellar-enhanced ultrafiltration (MEUF) and activated carbon fiber (ACF) hybrid processes: adsorption isotherm study for micelle onto ACF, Desal. Water Treat., 57 (2016) 7780–7788.
  16. R. Bade, S.H. Lee, S. Jo, H. Lee, S. Lee, Micellar enhanced ultrafiltration (MEUF) and activated carbon fibre (ACF) hybrid processes for chromate removal from wastewater, Desalination, 229 (2008) 264–278.
  17. M. Schwarze, Micellar-enhanced ultrafiltration (MEUF) – state of the art, Environ. Sci. Water Res. Technol., 3 (2017) 598–624.
  18. W. Lee, S. Lee, Micellar enhanced ultrafiltration (MEUF) and activated carbon fibre (ACF) hybrid processes for nickel removal from an aqueous solution, Desal. Water Treat., 47 (2012) 198–204.
  19. B. Channarong, S.H. Lee, R. Bade, O.V. Shipin, Simultaneous removal of nickel and zinc from aqueous solution by micellarenhanced ultrafiltration and activated carbon fiber hybrid process, Desalination, 262 (2010) 221–227.
  20. H. Gecol, E. Ergican, A. Fuchs, Molecular level separation of arsenic (V) from water using cationic surfactant micelles and ultrafiltration membrane, J. Membr. Sci., 241 (2004) 105–119.
  21. J. Iqbal, H.J. Kim, J.S. Yang, K. Baek, J.W. Yang, Removal of arsenic from groundwater by micellar-enhanced ultrafiltration (MEUF), Chemosphere, 66 (2007) 970–976.
  22. E. Ergican, H. Gecol, A. Fuchs, The effect of co-occurring inorganic solutes on the removal of arsenic(V) from water using cationic surfactant micelles and an ultrafiltration membrane, Desalination, 181 (2005) 9–26.
  23. B. Rahmanian, M. Pakizeh, S.A.A. Mansoori, R. Abedini, Application of experimental design approach and artificial neural network (ANN) for the determination of potential micellar-enhanced ultrafiltration process, J. Hazard. Mater., 187 (2011) 67–74.
  24. J. Landaburu-aguirre, E. Pongrácz, P. Perämäki, R.L. Keiski, Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: use of response surface methodology to improve understanding of process performance and optimisation, J. Hazard. Mater., 180 (2010) 524–534.
  25. M. Yaqub, S.H. Lee, Micellar enhanced ultrafiltration (MEUF) of mercury-contaminated wastewater: experimental and artificial neural network modeling, J. Water Process Eng., 33 (2020) 101046.
  26. B. Rahmanian, M. Pakizeh, M. Esfandyari, F. Heshmatnezhad, A. Maskooki, Fuzzy modeling and simulation for lead removal using micellar-enhanced ultrafiltration (MEUF), J. Hazard. Mater., 192 (2011) 585–592.
  27. M. Yaqub, S.H. Lee, Experimental and neural network modeling of micellar enhanced ultrafiltration for arsenic removal from aqueous solution, Environ. Eng. Res., 25 (2020), https://doi. org/10.1016/j.jwpe.2019.101046.
  28. F. Beolchini, F. Pagnanelli, I. De Michelis, F. Vegliò, Treatment of concentrated arsenic(V) solutions by micellar enhanced ultrafiltration with high molecular weight cut-off membrane, J. Hazard. Mater., 148 (2007) 116–121.
  29. S.H. Lee, S. Shrestha, Application of micellar enhanced ultrafiltration (MEUF) process for zinc(II) removal in synthetic wastewater: kinetics and two-parameter isotherm models, Int. Biodeterior. Biodegrad., 95 (2014) 241–250.
  30. B. Channarong, S. Hwan, R. Bade, O.V Shipin, Simultaneous removal of nickel and zinc from aqueous solution by micellarenhanced ultra filtration and activated carbon fiber hybrid process, Desalination, 262 (2010) 221–227.
  31. P. Chooto, D. Muakthong, C. Innuphat, P. Wararattananurak, Determination of inorganic arsenic species by hydride generation-inductively coupled plasma optical emission spectrometry, ScienceAsia, 42 (2016) 275–282.
  32. P. Sarojam, Analysis of Wastewater for Metals using ICP-OES, Perkin Elmer Instruments, Shelton, CT, 2010.
  33. C. Kern, T. Stefan, J. Hinrichs, Multiple linear regression modeling: prediction of cheese curd dry matter during curd treatment, Food Res. Int., 121 (2019) 471–478.
  34. N. Parveen, S. Zaidi, M. Danish, Development of SVR-based model and comparative analysis with MLR and ANN models for predicting the sorption capacity of Cr(VI), Process Saf. Environ. Prot., 107 (2017) 428–437.
  35. F. Zheng, H.R. Maier, W. Wu, G.C. Dandy, H.V. Gupta, T. Zhang, On lack of robustness in hydrological model development due to absence of guidelines for selecting calibration and evaluation data: demonstration for data‐driven models, Water Resour. Res., 54 (2018) 1013–1030.
  36. M.R. Moghaddasi, M. Noorian-Bidgoli, ICA-ANN, ANN and multiple regression models for prediction of surface settlement caused by tunneling, Tunnelling Underground Space Technol., 79 (2018) 197–209.
  37. K.K. Wong, C.K. Lee, K.S. Low, M.J. Haron, Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions, Chemosphere, 50 (2003) 23–28.
  38. J.-H. Huang, G.-M. Zeng, C.-F. Zhou, X. Li, L.-J. Shi, S.-B. He, Adsorption of surfactant micelles and Cd2+/Zn2+ in micellarenhanced ultrafiltration, J. Hazard. Mater., 183 (2010) 287–293.
  39. K.A. Krishnan, K.G. Sreejalekshmi, S. Varghese, Adsorptive retention of citric acid onto activated carbon prepared from Havea braziliansis sawdust: kinetic and isotherm overview, Desalination, 257 (2010) 46–52.
  40. Y.-S. Ho, G. McKay, Kinetic models for the sorption of dye from aqueous solution by wood, Process Saf. Environ. Prot., 76 (1998) 183–191.
  41. K. Al-Zboon, M.S. Al-Harahsheh, F.B. Hani, Fly ash-based geopolymer for Pb removal from aqueous solution, J. Hazard. Mater., 188 (2011) 414–421.
  42. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  43. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–471.
  44. K.K. Al-Zboon, B.M. Al-Smadi, S. Al-Khawaldh, Natural volcanic tuff-based geopolymer for Zn removal: adsorption isotherm, kinetic, and thermodynamic study, Water Air Soil Pollut., 227 (2016) 248–262.
  45. P. Bahmani, A. Maleki, R. Rezaee, M. Khamforoush, K. Yetilmezsoy, S.D. Athar, F. Gharibi, Simultaneous removal of arsenate and nitrate from aqueous solutions using micellarenhanced ultrafiltration process, J. Water Process Eng., 27 (2019) 24–31.
  46. M. Vasudevan, P.S. Ajithkumar, R.P. Singh, N. Natarajan, Mass transfer kinetics using two-site interface model for removal of Cr(VI) from aqueous solution with cassava peel and rubber tree bark as adsorbents, Environ. Eng. Res., 21 (2016) 152–163.
  47. T. Mahmood, S.U. Din, A. Naeem, S. Tasleem, A. Alum, S. Mustafa, Kinetics, equilibrium and thermodynamics studies of arsenate adsorption from aqueous solutions onto iron hydroxide, J. Ind. Eng. Chem., 20 (2014) 3234–3242.
  48. Z.J. Bajić, V.R. Djokić, Z.S. Veličković, M.M. Vuruna, M.Đ. Ristić, N.B. Issa, A.D. Marinković, Equilibrium, kinetics and thermodynamic studies on removal of Cd(II), Pb(II) and As(V) from wastewater using Carp (Cyprinus Carpio) scales, Dig. J. Nanomater. Biostruct., 8 (2013) 1581–1590.
  49. A.M. Ramírez, P.G. Melo, J.M.A. Robles, M.E.S. Castro, S. Khamkure, R.G. de León, Kinetic and thermodynamic study of arsenic(V) adsorption on P and W aluminum functionalized zeolites and its regeneration, J. Water Resour. Prot., 5 (2013) 58–67.