References
- E. Corcoran, C. Nellemann, E. Baker, R. Bos, D. Osborn,
H. Savelli, Sick Water: The Central Role of Wastewater
Management in Sustainable Development – A Rapid Response
Assessment, United Nations Environment Programme,
UN-HABITAT, GRID-Arendal, Norway, 2010.
- A.-M. García, R.A. Torres-Palma, L.A. Galeano, M.Á. Vicente,
A. Gil, Separation and Characterization of NOM Intermediates
Along AOP Oxidation, A. Gil, L.A. Galeano, M.À. Vicente,
Eds., Applications of Advanced Oxidation Processes (AOPs) in
Drinking Water Treatment, Vol. 67, Springer, Switzerland, 2017,
pp. 99–132.
- M. Sillanpää, M.C. Ncibi, A. Matilainen, M. Vepsäläinen,
Removal of natural organic matter in drinking water treatment
by coagulation: a comprehensive review, Chemosphere,
190 (2018) 54–71.
- A. Grunert, A. Frohnert, H.-C. Selinka, R. Szewzyk, A new
approach to testing the efficacy of drinking water disinfectants,
Int. J. Hyg. Environ. Health, 221 (2018) 1124–1132.
- J.H. Ramírez, L.A. Galeano, Natural Organic Matter Removal
by Heterogeneous Catalytic Wet Peroxide Oxidation (CWPO),
A. Gil, L.A. Galeano, M.À. Vicente, Eds., Applications of
Advanced Oxidation Processes (AOPs) in Drinking Water
Treatment, Vol. 67, Springer, Switzerland, 2017, pp. 69–98.
- J. Barrault, M. Abdellaoui, C. Bouchoule, A. Majesté,
J.M. Tatibouët, A. Louloudi, N. Papayannakos, N.H. Gangas,
Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared
clays, Stud. Surf. Sci. Catal., 130 (2000) 749–754.
- L.A. Galeano, M.Á. Vicente, A. Gil, Catalytic degradation of
organic pollutants in aqueous streams by mixed Al/M-pillared
clays (M = Fe, Cu, Mn), Catal. Rev., 56 (2014) 239–287.
- L.A. Galeano, P.F. Bravo, C.D. Luna, M.Á. Vicente, A. Gil,
Removal of natural organic matter for drinking water
production by Al/Fe-PILC-catalyzed wet peroxide oxidation:
Effect of the catalyst preparation from concentrated precursors,
Appl. Catal., B, 111–112 (2012) 527–535.
- A. Ordoñez-Ordoñez, D.M. Revelo-Romo, A.M. Garcia-Mora,
A. Hidalgo-Troya, L.-A. Galeano, MS2 coliphage inactivation
by Al/Fe PILC-activated catalytic wet peroxide oxidation:
multiresponse statistical optimization, Heliyon, 5 (2019) e01892
1–11.
- J.-K. Kim, K.G. Choi, I.-H. Cho, H.-S. Son, K.-D. Zoh,
Application of a microbial toxicity assay for monitoring
treatment effectiveness of pentachlorophenol in water using
UV photolysis and TiO2 photocatalysis, J. Hazard. Mater.,
148 (2007) 281–286.
- D.S. Babu, V. Srivastava, P.V. Nidheesh, M.S. Kumar,
Detoxification of water and wastewater by advanced
oxidation processes, Sci. Total Environ., 696 (2019) 133961.
- A. Sharma, J. Ahmad, S.J.S. Flora, Application of advanced
oxidation processes and toxicity assessment of transformation
products, Environ. Res., 167 (2018) 223–233.
- I.A. Ike, T. Karanfil, J.W. Cho, J. Hur, Oxidation byproducts
from the degradation of dissolved organic matter by advanced
oxidation processes – a critical review, Water Res., 164 (2019)
114929.
- M. Sillanpää, M.C. Ncibi, A. Matilainen, Advanced oxidation
processes for the removal of natural organic matter from
drinking water sources: a comprehensive review, J. Environ.
Manage., 208 (2018) 56–76.
- M. Díaz, M. Sobrero, Y. Granados, In: G. Castillo, Ed.,
Toxicological Tests and Methods of Water Quality Assessment;
Standardization, Intercalibration, Results and Applications,
IMTA, México, 2004, pp. 125–140 (in Spanish).
- K. Cubas, Correlation Between Toxicity Factor and
Physicochemical Parameters for Treated Domestic Effluents,
Dissertation Universidade Tecnológica Federal do Paraná,
2012 (in Portuguese).
- AENOR: Asociación Española de Normalización y
Certificación, Water Quality: Determination of Mobility
Inhibition of Daphnia magna Strains (Cladocera crustacea), Acute
Toxicity Test, ISO 6341, AENOR, Madrid-España, 2013 (in
Spanish).
- S. Chiva, J. Berlanga, R. Cuenca, J. Climent, Advanced Oxidation
Processes in the Integral Water Cycle, Castellón de la Plana:
Publicacions de la Universitat Jaume I, 2017 (in Catalan).
- L.H. Sipaúba, O. Rocha, Production of Plankton (Phytoplankton
and Zooplankton) for the Feeding of Aquatic Organisms, RiMa,
São Carlos-Brazil, 2003 (in Portuguese).
- IDEAM – Instituto de Hidrología, Meteorología y Estudios
Ambientales, INVEMAR – Instituto de Investigaciones Marinas
y Costeras, Water Monitoring Protocol, Bogotá D.C., Colombia,
2017 (in Spanish).
- APHA, AWWA, WEF, Standard Methods for the Examination
of Water and Wastewater, 22nd ed., American Public Health
Association, American Water Works Association, and Water
Environment Federation, Washington, D.C., 2012.
- A.M. García-Mora, H. García, R. Torres-Palma, A. Hidalgo,
L.A. Galeano, Optimization of the removal of natural organic
matter from a synthetic surrogate and real surface water by the
Al/Fe pillared clay-activated catalytic wet peroxide oxidation,
Environ. Sci.: Water Res. Technol., (2020) (in Press).
- R.F. Pupo, A.G. Trovó, M.R.A. da Silva, R.D. Villa, M.C. de
Oliveira, Fundamentals and environmental applications of the
Fenton and photo-Fenton processes, Quim. Nova, 30 (2007)
400–408 (in Portuguese).
- J.R. Meinertz, S.L. Greseth, M.P. Gaikowski, L.J. Schmidt,
Chronic toxicity of hydrogen peroxide to Daphnia magna in
a continuous exposure, flow-through test system, Sci. Total
Environ., 392 (2008) 225–232.
- A. Bownik, Z. Stępniewska, Protective effects of ectoine
on behavioral, physiological and biochemical parameters
of Daphnia magna subjected to hydrogen peroxide, Comp.
Biochem. Physiol. C: Toxicol. Pharmacol., 170 (2015) 38–49.
- W.J. Liu, S.A. Andrews, M.I. Stefan, J.R. Bolton, Optimal
methods for quenching H2O2 residuals prior to UFC testing,
Water Res., 37 (2003) 3697–3703.
- Colombia, Ministerio de la Protección Social, Ministerio de
Ambiente, Vivienda y Desarrollo Territorial, Resolution 2115,
June 22, 2007, Definition of Characteristics, Basic Instruments
and Frequencies of the Control and Surveillance System for
Water Quality for Human Consumption, Bogotá, Colombia,
2007 (in Spanish).
- A. Tapia, A. Reyes, I. García, Study of the fraction of organic
matter of greater removal in the coagulation-flocculation
process using surface water, Nexo Revista Científica, 24 (2013)
72–80 (in Spanish).
- M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez,
Combining efficiently catalytic hydrodechlorination and
wet peroxide oxidation (HDC–CWPO) for the abatement of
organochlorinated water pollutants, Appl. Catal., B, 150–151
(2014) 197–203.
- A.H. Pizarro, C.B. Molina, M. Munoz, Z.M. de Pedro,
N. Menendez, J.J. Rodriguez, Combining HDC and CWPO for
the removal of p-chloro-m-cresol from water under ambientlike
conditions, Appl. Catal., B, 216 (2017) 20–29.
- M.C. Valsania, F. Fasano, S.D. Richardson, M. Vincenti,
Investigation of the degradation of cresols in the treatments
with ozone, Water Res., 46 (2012) 2795–2804.
- M. Kavanaugh, Z. Chowdhury, S. Kommineni, Removal of
MTBE with Advanced Oxidation Processes, IWA Publishing,
London, 2004, pp. 111–208.
- M. Bekbolet, C.S. Uyguner, H. Selcuk, L. Rizzo, A.D. Nikolaou,
S. Meriç, V. Belgiorno, Application of oxidative removal of NOM
to drinking water and formation of disinfection by-products,
Desalination, 176 (2005) 155–156.
- Y. Ibarra, S. Salcedo, Environmental Toxicological Evaluation
of Drinking Water, Associated with the Presence of
Trihalomethanes, Dissertation, Universidad Mariana, 2017 (in
Spanish).
- S. Liu, M. Lim, R. Fabris, C. Chow, M. Drikas, R. Amal, TiO2
photocatalysis of natural organic matter in surface water:
impact on trihalomethane and haloacetic acid formation
potential, Environ. Sci. Technol., 42 (2008) 6218–6223.
- R. Lamsal, M.E. Walsh, G.A. Gagnon, Comparison of advanced
oxidation processes for the removal of natural organic matter,
Water Res., 45 (2011) 3263–3269.