References
- I. El Saliby, H.K. Shon, J. Kandasamy, S. Vigneswaran,
Nanotechnology for wastewater treatment: in brief, Encycl. Life
Support Syst., 7 (2008) 1–15.
- E.J. Rosenfeldt, K.G. Linden, Degradation of endocrine
disrupting chemicals bisphenol A, ethinyl estradiol, and
estradiol during UV photolysis and advanced oxidation
processes, Environ. Sci. Technol., 38 (2004) 5476–5483.
- S.A. Snyder, P. Westerhoff, Y. Yoon, D.L. Sedlak, Pharmaceuticals,
personal care products, and endocrine disruptors in water:
implications for the water industry, Environ. Eng. Sci., 20 (2003)
449–469.
- A.C. Johnson, J.P. Sumpter, Removal of endocrine-disrupting
chemicals in activated sludge treatment works, Environ. Sci.
Technol., 35 (2001) 4697–4703.
- M.A. Mahmood, S. Baruah, A.K. Anal, J. Dutta, Heterogeneous
photocatalysis for removal of microbes from water, Environ.
Chem. Lett., 10 (2012) 145–151.
- R.L. Rajala, M. Pulkkanen, M. Pessi, H. Heinonen-Tanski,
Removal of microbes from municipal wastewater effluent by
rapid sand filtration and subsequent UV irradiation, Water Sci.
Technol., 47 (2003) 157–162.
- X. Qu, P.J. Alvarez, Q. Li, Applications of nanotechnology
in water and wastewater treatment, Water Res., 47 (2013)
3931–3946.
- D.K. Tiwari, J. Behari, P. Sen, Application of nanoparticles in
waste water treatment, World App. Sci. J., 3 (2008) 417–433.
- Z. Sabouri, A. Akbari, H.A. Hosseini, M. Khatami, M. Darroudi,
Egg white-mediated green synthesis of NiO nanoparticles
and study of their cytotoxicity and photocatalytic activity,
Polyhedron, 178 (2020) 114351.
- S.A. Bhat, F. Zafar, A.H. Mondal, A. Kareem, A.U. Mirza,
S. Khan, A. Mohammad, Q.M.R. Haq, N. Nishat, Photocatalytic
degradation of carcinogenic Congo red dye in aqueous solution,
antioxidant activity and bactericidal effect of NiO nanoparticles,
J. Iran. Chem. Soc., 17 (2020) 215–227.
- M.Z. Bani-Fwaz, A.A. El-Zahhar, H.S. Abd-Rabboh, M.S. Hamdy,
M. Shkir, Synthesis of NiO nanoparticles by thermal routes for
adsorptive removal of crystal violet dye from aqueous solutions,
Int. J. Environ. Anal. Chem., (2019) 1–19, https://doi.org/10.1080
/03067319.2019.1678599.
- Al-Aoh, A. Hatem, Adsorption performances of nickel oxide
nanoparticles (NiO NPs) towards bromophenol blue dye (BB),
Desal. Water Treat., 110 (2018) 229–238.
- A. Darwish, M. Rashad, H.A. AL-Aoh, Methyl orange
adsorption comparison on nanoparticles: Isotherm, kinetics,
and thermodynamic studies, Dyes Pigm., 160 (2019) 563–571.
- H.A. Al-Aoh, I.A. Mihaina, M.A. Alsharif, A. Darwish,
M. Rashad, S.K. Mustafa, M.M. Aljohani, M.A. Al-Duais,
H. Al-Shehri, Removal of methylene blue from synthetic
wastewater by the selected metallic oxides nanoparticles
adsorbent: equilibrium, kinetic and thermodynamic studies,
Chem. Eng. Commun., (2019) 1–17, https://doi.org/10.1080/0098
6445.2019.1680366.
- G. Ilbeigi, A. Kariminik, M.H. Moshafi, The antibacterial
activities of NiO nanoparticles against some gram-positive and
gram-negative bacterial strains, Int. J. Basic Sci. Med., 4 (2019)
69–74.
- M.R. Abukhadra, M.A. Sayed, A.M. Rabie, S.A. Ahmed, Surface
decoration of diatomite by Ni/NiO nanoparticles as hybrid
composite of enhanced adsorption properties for malachite
green dye and hexavalent chromium, Colloids Surf., A,
577 (2019) 583–593.
- N.N.M. Zorkipli, N.H.M. Kaus, A.A. Mohamad, Synthesis of
NiO nanoparticles through sol-gel method, Procedia Chem.,
19 (2016) 626–631.
- S. El-Sheikh, R. Mohamed, O. Fouad, Synthesis and structure
screening of nanostructured chromium oxide powders, J. Alloys
Compd., 482 (2009) 302–307.
- S. Balamurugan, A.L. Philip, R. Vidya, A Versatile combustion
synthesis and properties of nickel oxide (NiO) nanoparticles,
J. Supercond. Novel Magn., 29 (2016) 2207–2212.
- D. Ahire, G. Patil, G. Jain, V. Gaikwad, Synthesis of Nanostructured
NiO by Hydrothermal Route and its Gas Sensing
Properties, 2012 Sixth International Conference on Sensing
Technology (ICST), IEEE, Kolkata, India, 2012, pp. 136–141.
- J.-F. Li, X. Bo, L.-J. Du, Y. Rong, T.D. Liang, Preparation of
nano-NiO particles and evaluation of their catalytic activity in
pyrolyzing cellulose, J. Fuel Chem. Technol., 36 (2008) 42–47.
- S. Sudhasree, A. Shakila Banu, P. Brindha, G.A. Kurian,
Synthesis of nickel nanoparticles by chemical and green route
and their comparison in respect to biological effect and toxicity,
Toxicol. Environ. Chem., 96 (2014) 743–754.
- R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, Photocatalytic
and antimicrobial activity of NiWO4 nanoparticles stabilized
by the plant extract, Mater. Sci. Semicond. Process., 40 (2015)
123–129.
- J. Sharma, P. Srivastava, G. Singh, M.S. Akhtar, S. Ameen,
Biosynthesized NiO nanoparticles: potential catalyst for ammonium
perchlorate and composite solid propellants, Ceram. Int.,
41 (2015) 1573–1578.
- S. Banerjee, M.C. Chattopadhyaya, Adsorption characteristics
for the removal of a toxic dye, tartrazine from aqueous solutions
by a low cost agricultural by-product, Arabian J. Chem.,
10 (2017) S1629–S1638.
- C.P. Bergmann, F.M. Machado, Carbon Nanomaterials as
Adsorbents for Environmental and Biological Applications,
Springer, 2015.
- A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, Kinetics, isotherms
and thermodynamic modeling of liquid phase adsorption
of Rhodamine B dye onto Raphia hookerie fruit epicarp, Water
Resour. Ind., 15 (2016) 14–27.
- H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and
thermodynamics of cadmium ion removal by adsorption onto
nano zerovalent iron particles, J. Hazard. Mater., 186 (2011)
458–465.
- J.C. Igwe, A.A. Abia, Adsorption kinetics and intraparticulate
diffusivities for bioremediation of Co(II), Fe(II) and Cu(II) ions
from waste water using modified and unmodified maize cob,
Int. J. Phys. Sci., 2 (2007) 119–127.
- É.C. Lima, M.A. Adebayo, F.M. Machado, Kinetic and
Equilibrium Models of Adsorption, C.P. Bergmann, F.M.
Machado,
Eds., Carbon Nanomaterials as Adsorbents for
Environmental and Biological Applications, Springer, 2015,
pp. 33–69.
- S. Farias, D. de Oliveira, A. Souza, S. Souza, A. Morgado,
Removal of reactive blue 21 and reactive red 195 dyes using
horseradish peroxidase as catalyst, Braz. J. Chem. Eng.,
34 (2017) 701–707.
- S.K. Chaudhuri, L. Malodia, Biosynthesis of zinc oxide
nanoparticles using leaf extract of Calotropis gigantea:
characterization and its evaluation on tree seedling growth in
nursery stage, Appl. Nanosci., 7 (2017) 501–512.
- S.M. Bairagi, P. Ghule, R. Gilhotra, Pharmacology of Natural
Products: An Recent Approach on Calotropis gigantea and
Calotropis procera, 2018.
- P.K. Pattnaik, D. Kar, H. Chhatoi, S. Shahbazi, G. Ghosh,
A. Kuanar, Chemometric profile and antimicrobial activities of
leaf extract of Calotropis procera and Calotropis gigantea, Nat.
Product Res., 31 (2017) 1954–1957.
- J.K. Sharma, M.S. Akhtar, S. Ameen, P. Srivastava, G. Singh,
Green synthesis of CuO nanoparticles with leaf extract of
Calotropis gigantea and its dye-sensitized solar cells applications,
J. Alloys Compd., 632 (2015) 321–325.
- M. Venigalla, Phytochemical Screening of Leaf Extracts of
Calotropis gigantea Linn, 2009.
- N. Ramamurthy, S. Kannan, Fourier transform infrared
spectroscopic analysis of a plant (Calotropis gigantea Linn)
from an industrial village, Cuddalore dt, Tamilnadu, India,
Romanian J. Biophys., 17 (2007) 269–276.
- F. Farzaneh, S.H. Kashanie, Green synthesis and characterization
of Ni/NiO magnetic nanoparticles in water, J. Ceram. Process.
Res., 14 (2013) 673–676.
- F. Thema, E. Manikandan, A. Gurib-Fakim, M. Maaza, Single
phase bunsenite NiO nanoparticles green synthesis by
Agathosma betulina natural extract, J. Alloys Compd., 657 (2016)
655–661.
- S. Meenakshi, N. Viswanathan, Identification of selective ionexchange
resin for fluoride sorption, J. Colloid Interface Sci.,
308 (2007) 438–450.
- A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, V.K. Gupta,
Removal of basic dye Auramine-O by ZnS: Cu nanoparticles
loaded on activated carbon: optimization of parameters using
response surface methodology with central composite design,
RSC Adv., 5 (2015) 18438–18450.
- J.C. Igwe, A. Abia, Sorption kinetics and intrapaticulate
diffusivity of As(III) bioremediation from aqueous solution,
using modified and unmodified coconut fiber, Ecletica Quimica,
31 (2006) 23–29.
- M. Ciopec, A. Negrea, L. Lupa, C. Davidescu, P. Negrea,
Studies regarding As(V) adsorption from underground water
by Fe-XAD8-DEHPA impregnated resin. Equilibrium sorption
and fixed-bed column tests, Molecules, 19 (2014) 16082–16101.
- M. Rashad, H.A. Al-Aoh, Promising adsorption studies of
bromophenol blue using copper oxide nanoparticles, Desal.
Water Treat., 139 (2019) 360–368.
- E.-S. El-Ashtoukhy, N.K. Amin, O. Abdelwahab, Removal
of lead (II) and copper (II) from aqueous solution using
pomegranate peel as a new adsorbent, Desalination, 223 (2008)
162–173.
- M. Rafiee, M. Jahangiri-rad, Adsorption of Reactive Blue 19
from aqueous solution by carbon nano tubes: equilibrium,
thermodynamics and kinetic studies, Res. J. Environ. Sci.,
8 (2014) 205–214.
- A. Angel Ezhilarasi, J. Judith Vijaya, K. Kaviyarasu, L. John
Kennedy, R.J. Ramalingam, H.A. Al-Lohedan, Green synthesis
of NiO nanoparticles using Aegle marmelos leaf extract for the
evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic
properties, J. Photochem. Photobiol., B, 180 (2018)
39–50.
- S. Rakshit, S. Ghosh, S. Chall, S.S. Mati, S. Moulik, S.C. Bhattacharya,
Controlled synthesis of spin glass nickel oxide
nanoparticles and evaluation of their potential antimicrobial
activity: a cost effective and eco friendly approach, RSC Adv.,
3 (2013) 19348–19356.
- A.K. Ramasami, M. Reddy, G.R. Balakrishna, Combustion
synthesis and characterization of NiO nanoparticles, Mater. Sci.
Semicond. Process., 40 (2015) 194–202.