References

  1. China Urban-Rural Construction Statistical Yearbook 2017, China Planning Press, Beijing. Available at: http://www. mohurd.gov.cn/xytj/tjzljsxytjgb/jstjnj/index.html/(accessed on 1st January 2019).
  2. W.P.F. Barber, Thermal hydrolysis for sewage treatment: a critical review, Water Res., 104 (2016) 53–71.
  3. D.L. Armstrong, R.N. Hartman, C.P. Rice, M. Ramirez, A. Torrents, Effect of Cambi thermal hydrolysis process– anaerobic digestion treatment on phthalate plasticizers in wastewater sludge, Environ. Eng. Sci., 35 (2018) 210–218.
  4. H.-L. Chen, Y.-Y. Yan, Q.-B. He, X.-H. Dai, Q. Zhou, Effects of mild thermal pretreatment on anaerobic digestibility of sludge with low organic content, Environ. Sci., 34 (2013) 629–634 (in Chinese).
  5. J. Yamaguchi, S. Araki, Biomass production of banana plants in the indigenous farming system of the East African Highland: a case study on the Kamachumu Plateau in northwest Tanzania, Agric. Ecosyst. Environ., 102 (2004) 93–111.
  6. S.B. Gan, Y. Li, X.R. Zhang, G.J. Zhang, N. Wang, Design and experiment on banana stalk chopper with feeding type spindle flail, Trans. Chin. Soc. Agric. Eng., 30 (2014) 10–19 (in Chinese).
  7. J. Mata-Alvarez, S. Macé, P. Llabrés, Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives, Bioresour. Technol., 74 (2000) 3–16.
  8. X.H. Dai, N. Duan, B. Dong, L.L. Dai, High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance, Waste Manage., 33 (2013) 308–316.
  9. M.H. Zwietering, I. Jongenburger, F.M. Rombouts, K. van’T Riet, Modeling of the bacterial growth curve, Appl. Environ. Microbiol., 56 (1990) 1875–1881.
  10. J.-J. Lay, Y.-J. Lee, T. Noike, Feasibility of biological hydrogen production from organic fraction of municipal solid waste, Water Res., 33 (1999) 2579–2586.
  11. A. Donoso-Bravo, S.I. Pérez-Elvira, F. Fdz-Polanco, Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes, Chem. Eng. J., 160 (2010) 607–614.
  12. J. Zhang, S.F. Wang, S.G. Lang, P. Xian, T. Xie, Kinetics of combined thermal pretreatment and anaerobic digestion of waste activated sludge from sugar and pulp industry, Chem. Eng. J., 295 (2016) 131–138.
  13. Q. Deng, J. Zhang, P. Xian, Improved anaerobic digestibility of low organic sludge with banana straw, Environ. Eng., 38 (2020) 144–149 (in Chinese).
  14. B. Rincón, C.J. Banks, S. Heaven, Biochemical methane potential of winter wheat (Triticum aestivum L.): influence of growth stage and storage practice, Bioresour. Technol., 101 (2010) 8179–8184.
  15. I. Angelidaki, M. Alves, D. Bolzonella, L. Borzacconi, J.L. Campos, A.J. Guwy, S. Kalyuzhnyi, P. Jenicek, J.B. van Lier, Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays, Water Sci. Technol., 59 (2009) 927–934.
  16. B. Budiyono, I.N. Widiasa, S. Johari, S. Sunarso, Increasing biogas production rate from cattle manure using rumen fluid as inoculums, Int. J. Sci. Eng., 6 (2014) 31–38.
  17. M.O.L. Yusuf, N.L. Ify, The effect of waste paper on the kinetics of biogas yield from the co-digestion of cow dung and water hyacinth, Biomass Bioenergy, 35 (2011) 1345–1351.
  18. N. Ren, A. Wang, Principle and Application of Anaerobic Biotechnology, Chemical Industry Press, Beijing, 2004, pp. 315– 317 (in Chinese).
  19. N. Ren, A. Wang, F. Ma. Physiological Ecology of Microorganisms Producing Acid Fermentation, Science Press, Beijing, 2005, pp. 275–276 (in Chinese).
  20. Y. He, Anaerobic Biological Treatment of Wastewater, China Light Industry Press, Beijing, 1998, pp. 536–538.
  21. P.J. Van Soest, J.B. Robertson, B.A. Lewis, Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition, J. Dairy Sci., 74 (1991) 3583–3597.
  22. S.I. Perez-Elvira, M. Fdz-Polanco, F. Fdz-Polanco, Increasing the performance of anaerobic digestion: pilot scale experimental study for thermal hydrolysis of mixed sludge, Front. Environ. Sci. Eng. China, 4 (2010) 135–141.
  23. A. Veeken, B. Hamelers, Effect of temperature on hydrolysis rates of selected biowaste components, Bioresour. Technol., 69 (1999) 249–254.
  24. M. Zhou, R. Zhang, J. Lin, Practical Technology of Biogas, Chemical Industry Press, Beijing, 2005, pp. 1–15 (in Chinese).
  25. Y.Y. Li, T. Noike, Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment, Water Sci. Technol., 26 (1992) 857–866.
  26. R. Cano, A. Nielfa, M. Fdz-Polanco, Thermal hydrolysis integration in the anaerobic digestion process of different solid wastes: energy and economic feasibility study, Bioresour. Technol., 168 (2014) 14–22.
  27. K. Wang, J.-X. Jiang, F. Xu, R.-C. Sun, Influence of steaming pressure on steam explosion pretreatment of Lespedeza stalks (Lespedeza cyrtobotrya). II. Characteristics of degraded lignin, J. Appl. Polym. Sci., 116 (2010) 1617–1625.
  28. L.M. Palmowski, J.A. Müller, Influence of the size reduction of organic waste on their anaerobic digestion, Water Sci. Technol., 41 (2000) 155–162.
  29. Y.Z. Pang, Y.P. Liu, X.J. Li, K.S. Wang, H.R. Yuan, Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment, Energy Fuels, 22 (2008) 2761–2766.
  30. Z. Sun, J. Zhang, Y. Liu, Y. Wu, D. Liu, W. Ma, Biochemical methane potential and kinetics of anaerobic digestion of cattle manure campared with corn stover, Chin. J. Environ. Eng., 10 (2016) 1468–1474 (in Chinese).
  31. Y. Chen, J.J. Cheng, K.S. Creamer, Inhibition of anaerobic digestion process: a review, Bioresour. Technol., 99 (2008) 4044–4064.
  32. H.P. Yuan, N.W. Zhu, Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion, Renewable Sustainable Energy Rev., 58 (2016) 429–438.
  33. F. Raposo, R. Borja, M.A. Martín, A. Martín, M.A. de la Rubia, B. Rincón, Influence of inoculum–substrate ratio on the anaerobic digestion of sunflower oil cake in batch mode: process stability and kinetic evaluation, Chem. Eng. J., 149 (2009) 70–77.