References
- D.G.H. Samuel, P.K. Nagarajan, T. Arunkumar, E. Kannan,
R. Sathyamurthy, Enhancing the solar still yield by increasing
the surface area of water - a review, Environ. Prog. Sustainable
Energy, 35 (2016) 815–822.
- M.S.K. Tarawneh, Effect of water depth on the performance
evaluation of solar still, Jordan J. Mech. Ind. Eng., 1 (2007)
23–29.
- Y.H. Zurigat, M.K. Abu-Arabi, Modelling and performance
analysis of a regenerative solar desalination unit, Appl. Therm.
Eng., 24 (2004) 2003–2005.
- R. Vendra, S. Kumar, M.M. Hasan, M.E. Khan, G.N. Tiwari,
Performance of a solar still integrated with evacuated tube
collector in natural mode, Desalination, 318 (2013) 25–33.
- O. Ansari, M. Asbik, A. Bah, A. Arbaoui, A. Khmou, Desalination
of the brackish water using a passive solar still with a heat
energy storage system, Desalination, 324 (2013) 10–20.
- M. Koilraj Gnanadason, P. Senthil Kumar, G.Jemilda, S. Sherin
Jasper, Effect of nanofluids in a modified vacuum single basin
solar still, Int. J. Sci. Eng. Res., 1 (2011) 171–177.
- A. Hachemi, Experimental study of thermal performance of
offset rectangular plate fin absorber-plates, Renewable Energy,
17 (1999) 260–273.
- K. Pottler, C.M. Sippel, A. Beck, J. Fricke, Optimized finned
absorber geometries for solar air heating collectors, Solar
Energy, 67 (2000) 35–52.
- V. Velmurugan, M. Gopalakrishnan, R. Raghu, K. Srithar, Single
basin solar still with fin for enhancing productivity, Energy
Convers. Manage., 49 (2008) 2602–2608.
- V. Velmurugan, C.K. Deenadayalan, H. Vinod, K. Srithar,
Desalination of effluent using fin type solar still, Energy,
33 (2008) 1719–1727.
- A.E. Kabeel, Performance of solar still with a concave wick
evaporation surface, Energy, 34 (2009) 1504–1509.
- M. Appadurai, V. Velmurugan, Performance analysis of fin
type solar still integrated with fin type mini solar pond, type
mini solar pond, Sustainable Energy Technol. Assess., 9 (2015)
30–36.
- B. Abu-Hijleh, H.M. Rababa’h, Experimental study of a solar
still with sponge cubes in basin, Energy Convers. Manage.,
44 (2003) 1411–1418.
- M.K. Phadatare, S.K. Verma, Influence of water depth on internal
heat and mass transfer in a plastic solar still, Desalination,
217 (2007) 267–275.
- R. Tripathi, G.N. Tiwari, Thermal modeling of passive and
active solar stills for different depths of water by using the
concept of solar fraction, Solar Energy, 80 (2006) 956–967.
- R. Tripathi, G.N. Tiwari, Effect of water depth on internal heat
and mass transfer for active solar distillation, Desalination,
173 (2005) 187–200.
- A.J.N. Khalifa, A.M. Hamood, On the verification of the effect
of water depth on the performance of basin type solar stills,
Solar Energy, 83 (2009) 1312–1321.
- P.U. Suneesh, R. Jayaprakash, T. Arunkumar, D. Denkenberger,
Effect of air flow on ‘V’ type solar still with cotton gauze
cooling, Desalination, 337 (2014) 1–5.
- B.A.K. Abu-Hijleh, Enhanced solar still performance using
water film cooling of the glass cover, Desalination, 107 (1996)
235–244.
- H. Kargar Sharif Abad, M. Ghiasi, S. Jahangiri Mamouri,
M.B. Shafii, A novel integrated solar desalination system
with a pulsating heat pipe, Desalination, 311 (2013) 206–210.
- M. Ghalambaz, A. Doostanidezfuli, H. Zargartalebi,
A.J. Chamkha, MHD phase change heat transfer in an
inclined enclosure: effect of a magnetic field and cavity
inclination, Numer. Heat Transfer, Part A, 71 (2017) 91–109.
- A.A. El-Sebaii, A.A. Al-Ghamdi, F.S. Al-Hazmi, A.S. Faidah,
Thermal performance of a single basin solar still with PCM as a
storage medium, Appl. Energy, 86 (2009) 1187–1195.
- R. Sathyamurthy, S.A. El-Agouz, V. Dharmaraj, Experimental
analysis of a portable solar still with evaporation and
condensation chambers, Desalination, 367 (2015) 180–185.
- H. Al-Hussaini, I.K. Smith, Enhancing of solar still productivity
using vacuum technology, Energy Convers. Manage., 36 (1995)
1047–1051.
- Y.F. Nassar, S.A. Yousif, A.A. Salem, The second generation of
the solar desalination systems, Desalination, 209 (2007) 177–181.
- H.M. Ali, Experimental study on air motion effect inside the
solar still on still performance, Energy Convers. Manage.,
32 (1991) 67–70.
- Y. Taamneh, M.M. Taamneh, Performance of pyramid-shaped
solar still: experimental study, Desalination, 291 (2012) 65–68.
- Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, G. Wu,
Heat transfer properties of nanoparticle-in-fluid dispersions
(nanofluids) in laminar flow, Int. J. Heat Mass Transfer,
48 (2005) 1107–1116.
- M. Mehrali, E. Sadeghinezhad, M.A. Rosen, S.T. Latibari,
M. Mehrali, H.S.C. Metselaar, Effect of specific surface area
on convective heat transfer of graphene nanoplatelet aqueous
nanofluids, Exp. Therm. Fluid Sci., 68 (2015) 100–108.
- K.L. Dreher, Health and environmental impact of
nanotechnology: toxicological assessment of manufactured
nanoparticles, Toxicol. Sci., 5 (2004) 3–5.
- J.A. Eastman, U.S. Choi, S. Li, L.J. Thompson, S. Lee,
Enhanced Thermal Conductivity Through the Development
of Nanofluids, Proceedings of the Symposium on Nanophase
and Nanocomposite Materials II, Vol. 457, Materials Research
Society, Boston, 1997, pp. 3–11.
- H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai., Thermal conductivity
enhancement of suspensions containing nanosized alumina
particles thermal conductivity enhancement of suspensions
containing nanosized alumina particles, J. Appl. Phys., 91 (2002)
4568–4572.
- S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature
dependence of thermal conductivity enhancement for
nanofluids, Heat Transfer, 125 (2003) 567–574.
- S. Nijmeh, S. Odeh, B. Akash, Experimental and theoretical
study of a single-basin solar sill in Jordan, Int. Commun.
Heat Mass Transfer, 32 (2005) 565–572.
- A.E. Kabeel, Z.M. Omara, F.A. Essa, Improving the performance
of solar still by using nanofluids and providing vacuum,
Energy Convers. Manage., 86 (2014) 268–274.
- T. Elango, A. Kannan, K. Kalidasa Murugavel, Performance
study on single basin single slope solar still with different water
nanofluids, Desalination, 360 (2015) 45–51.
- R. Nasrin, M.A. Alim, A.J. Chamkha, Effects of physical
parameters on natural convection in a solar collector filled with
nanofluid, Heat Transfer, 42 (2013) 73–88.
- A.J. Chamkha, F. Selimefendigil, Numerical analysis for
thermal performance of a photovoltaic thermal solar collector
with SiO2-water nanofluid, Appl. Sci., 8 (2018) 2223.
- L. Sahota, G.N. Tiwari, Effect of nanofluids on the performance
of passive double slope solar still: a comparative study using
characteristic curve, Desalination, 388 (2016) 9–21.
- S.W. Sharshir, G. Peng, L. Wu, N. Yang, F.A. Essa,
A.H. Elsheikh, S.I.T. Mohamed, A.E. Kabeel, Enhancing the
solar still performance using nanofluids and glass cover cooling:
experimental study, Appl. Therm. Sci., 113 (2017) 684–693.
- O. Mahian, A. Kianifar, S.Z. Heris, D. Wen, A.Z. Sahin,
S. Wongwises, Nanofluids effects on the evaporation rate in
a solar still equipped with a heat exchanger, Nano Energy,
36 (2017) 134–155.