References

  1. D.G.H. Samuel, P.K. Nagarajan, T. Arunkumar, E. Kannan, R. Sathyamurthy, Enhancing the solar still yield by increasing the surface area of water - a review, Environ. Prog. Sustainable Energy, 35 (2016) 815–822.
  2. M.S.K. Tarawneh, Effect of water depth on the performance evaluation of solar still, Jordan J. Mech. Ind. Eng., 1 (2007) 23–29.
  3. Y.H. Zurigat, M.K. Abu-Arabi, Modelling and performance analysis of a regenerative solar desalination unit, Appl. Therm. Eng., 24 (2004) 2003–2005.
  4. R. Vendra, S. Kumar, M.M. Hasan, M.E. Khan, G.N. Tiwari, Performance of a solar still integrated with evacuated tube collector in natural mode, Desalination, 318 (2013) 25–33.
  5. O. Ansari, M. Asbik, A. Bah, A. Arbaoui, A. Khmou, Desalination of the brackish water using a passive solar still with a heat energy storage system, Desalination, 324 (2013) 10–20.
  6. M. Koilraj Gnanadason, P. Senthil Kumar, G.Jemilda, S. Sherin Jasper, Effect of nanofluids in a modified vacuum single basin solar still, Int. J. Sci. Eng. Res., 1 (2011) 171–177.
  7. A. Hachemi, Experimental study of thermal performance of offset rectangular plate fin absorber-plates, Renewable Energy, 17 (1999) 260–273.
  8. K. Pottler, C.M. Sippel, A. Beck, J. Fricke, Optimized finned absorber geometries for solar air heating collectors, Solar Energy, 67 (2000) 35–52.
  9. V. Velmurugan, M. Gopalakrishnan, R. Raghu, K. Srithar, Single basin solar still with fin for enhancing productivity, Energy Convers. Manage., 49 (2008) 2602–2608.
  10. V. Velmurugan, C.K. Deenadayalan, H. Vinod, K. Srithar, Desalination of effluent using fin type solar still, Energy, 33 (2008) 1719–1727.
  11. A.E. Kabeel, Performance of solar still with a concave wick evaporation surface, Energy, 34 (2009) 1504–1509.
  12. M. Appadurai, V. Velmurugan, Performance analysis of fin type solar still integrated with fin type mini solar pond, type mini solar pond, Sustainable Energy Technol. Assess., 9 (2015) 30–36.
  13. B. Abu-Hijleh, H.M. Rababa’h, Experimental study of a solar still with sponge cubes in basin, Energy Convers. Manage., 44 (2003) 1411–1418.
  14. M.K. Phadatare, S.K. Verma, Influence of water depth on internal heat and mass transfer in a plastic solar still, Desalination, 217 (2007) 267–275.
  15. R. Tripathi, G.N. Tiwari, Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction, Solar Energy, 80 (2006) 956–967.
  16. R. Tripathi, G.N. Tiwari, Effect of water depth on internal heat and mass transfer for active solar distillation, Desalination, 173 (2005) 187–200.
  17. A.J.N. Khalifa, A.M. Hamood, On the verification of the effect of water depth on the performance of basin type solar stills, Solar Energy, 83 (2009) 1312–1321.
  18. P.U. Suneesh, R. Jayaprakash, T. Arunkumar, D. Denkenberger, Effect of air flow on ‘V’ type solar still with cotton gauze cooling, Desalination, 337 (2014) 1–5.
  19. B.A.K. Abu-Hijleh, Enhanced solar still performance using water film cooling of the glass cover, Desalination, 107 (1996) 235–244.
  20. H. Kargar Sharif Abad, M. Ghiasi, S. Jahangiri Mamouri, M.B. Shafii, A novel integrated solar desalination system with a pulsating heat pipe, Desalination, 311 (2013) 206–210.
  21. M. Ghalambaz, A. Doostanidezfuli, H. Zargartalebi, A.J. Chamkha, MHD phase change heat transfer in an inclined enclosure: effect of a magnetic field and cavity inclination, Numer. Heat Transfer, Part A, 71 (2017) 91–109.
  22. A.A. El-Sebaii, A.A. Al-Ghamdi, F.S. Al-Hazmi, A.S. Faidah, Thermal performance of a single basin solar still with PCM as a storage medium, Appl. Energy, 86 (2009) 1187–1195.
  23. R. Sathyamurthy, S.A. El-Agouz, V. Dharmaraj, Experimental analysis of a portable solar still with evaporation and condensation chambers, Desalination, 367 (2015) 180–185.
  24. H. Al-Hussaini, I.K. Smith, Enhancing of solar still productivity using vacuum technology, Energy Convers. Manage., 36 (1995) 1047–1051.
  25. Y.F. Nassar, S.A. Yousif, A.A. Salem, The second generation of the solar desalination systems, Desalination, 209 (2007) 177–181.
  26. H.M. Ali, Experimental study on air motion effect inside the solar still on still performance, Energy Convers. Manage., 32 (1991) 67–70.
  27. Y. Taamneh, M.M. Taamneh, Performance of pyramid-shaped solar still: experimental study, Desalination, 291 (2012) 65–68.
  28. Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, G. Wu, Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow, Int. J. Heat Mass Transfer, 48 (2005) 1107–1116.
  29. M. Mehrali, E. Sadeghinezhad, M.A. Rosen, S.T. Latibari, M. Mehrali, H.S.C. Metselaar, Effect of specific surface area on convective heat transfer of graphene nanoplatelet aqueous nanofluids, Exp. Therm. Fluid Sci., 68 (2015) 100–108.
  30. K.L. Dreher, Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles, Toxicol. Sci., 5 (2004) 3–5.
  31. J.A. Eastman, U.S. Choi, S. Li, L.J. Thompson, S. Lee, Enhanced Thermal Conductivity Through the Development of Nanofluids, Proceedings of the Symposium on Nanophase and Nanocomposite Materials II, Vol. 457, Materials Research Society, Boston, 1997, pp. 3–11.
  32. H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai., Thermal conductivity enhancement of suspensions containing nanosized alumina particles thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Appl. Phys., 91 (2002) 4568–4572.
  33. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, Heat Transfer, 125 (2003) 567–574.
  34. S. Nijmeh, S. Odeh, B. Akash, Experimental and theoretical study of a single-basin solar sill in Jordan, Int. Commun. Heat Mass Transfer, 32 (2005) 565–572.
  35. A.E. Kabeel, Z.M. Omara, F.A. Essa, Improving the performance of solar still by using nanofluids and providing vacuum, Energy Convers. Manage., 86 (2014) 268–274.
  36. T. Elango, A. Kannan, K. Kalidasa Murugavel, Performance study on single basin single slope solar still with different water nanofluids, Desalination, 360 (2015) 45–51.
  37. R. Nasrin, M.A. Alim, A.J. Chamkha, Effects of physical parameters on natural convection in a solar collector filled with nanofluid, Heat Transfer, 42 (2013) 73–88.
  38. A.J. Chamkha, F. Selimefendigil, Numerical analysis for thermal performance of a photovoltaic thermal solar collector with SiO2-water nanofluid, Appl. Sci., 8 (2018) 2223.
  39. L. Sahota, G.N. Tiwari, Effect of nanofluids on the performance of passive double slope solar still: a comparative study using characteristic curve, Desalination, 388 (2016) 9–21.
  40. S.W. Sharshir, G. Peng, L. Wu, N. Yang, F.A. Essa, A.H. Elsheikh, S.I.T. Mohamed, A.E. Kabeel, Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study, Appl. Therm. Sci., 113 (2017) 684–693.
  41. O. Mahian, A. Kianifar, S.Z. Heris, D. Wen, A.Z. Sahin, S. Wongwises, Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger, Nano Energy, 36 (2017) 134–155.