References

  1. H. Kiziltaş, T. Tekin, Increasing of photocatalytic performance of TiO2 nanotubes by doping AgS and CdS, Chem. Eng. Commun., 204 (2017) 852–857.
  2. J. Singh, S.A. Khan, J. Shah, R.K. Kotnala, S. Mohapatra, Nanostructured TiO2 thin films prepared by RF magnetron sputtering for photocatalytic applications, Appl. Surf. Sci., 422 (2017) 953–961.
  3. M.A. Elsayed, M. Gobara, S. Elbasuney, Instant synthesis of bespoke nanoscopic photocatalysts with enhanced surface area and photocatalytic activity for wastewater treatment, J. Photochem. Photobiol., A, 344 (2017) 121–133.
  4. A.J. Haider, R.H. Al-Anbari, G.R. Kadhim, C.T. Salame, Exploring potential environmental applications of TiO2 nanoparticles, Energy Procedia, 119 (2017) 332–345.
  5. E. Al-Hetlani, M.O. Amin, M. Madkour, Detachable photocatalysts of anatase TiO2 nanoparticles: annulling surface charge for immediate photocatalyst separation, Appl. Surf. Sci., 411 (2017) 355–362.
  6. R. Mechiakh, N.B. Sedrine, J.B. Naceur, R. Chtourou, Elaboration and characterization of nanocrystalline TiO2 thin films prepared by sol–gel dip-coating, Surf. Coat. Technol., 206 (2011) 243–249.
  7. M.R. Delsouz Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.W. Daud, Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation, J. Mol. Liq., 258 (2018) 354–365.
  8. D. Tekin, Photocatalytic degradation kinetics of Congo Red dye in a sonophotoreactor with nanotube TiO2, Prog. React. Kinet. Mech., 39 (2014) 249–261.
  9. S.M.H. Al-Jawad, A.A. Taha, M.M. Salim, Synthesis and characterization of pure and Fe doped TiO2 thin films for antimicrobial activity, Optik, 142 (2017) 42–53.
  10. F. Bensouici, M. Bououdina, A.A. Dakhel, R. Tala-Ighil, M. Tounane, A. Iratni, T. Souier, S. Liu, W. Cai, Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films, Appl. Surf. Sci., 395 (2017) 110–116.
  11. J. Singh, K. Sahu, A. Pandey, M. Kumar, T. Ghosh, B. Satpati, T. Som, S. Varma, D.K. Avasthi, S. Mohapatra, Atom beam sputtered Ag-TiO2 plasmonic nanocomposite thin films for photocatalytic applications, Appl. Surf. Sci., 411 (2017) 347–354.
  12. J.F. de Brito, F. Tavella, C. Genovese, C. Ampelli, M.V.B. Zanoni, G. Centi, S. Perathoner, Role of CuO in the modification of the photocatalytic water splitting behavior of TiO2 nanotube thin films, Appl. Catal., B, 224 (2018) 136–145.
  13. R. Zhou, S. Lin, H. Zong, T. Huang, F. Li, J. Pan, J. Cui, Continuous synthesis of Ag/TiO2 nanoparticles with enhanced photocatalytic activity by pulsed laser ablation, J. Nanomater., 2017 (2017) 1–9.
  14. M. Vinayagam, S. Ramachandran, R. Vijayan, A. Sivasamy, Photocatalytic degradation of orange G dye using ZnO/biomass activated carbon nanocomposite, J. Environ. Chem. Eng., 6 (2018) 3726–3734.
  15. X.F. Lei, X.X. Xue, H. Yang, Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr(VI) under visible light, Appl. Surf. Sci., 321 (2014) 396–403.
  16. D.J. Kim, S.H. Hahn, S.H. Oh, E.J. Kim, Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol–gel dip coating, Mater. Lett., 57 (2002) 355–360.
  17. D. Tekin, Photocatalytic degradation of textile dyestuffs using TiO2 nanotubes prepared by sonoelectrochemical method, Appl. Surf. Sci., 318 (2014) 132–136.
  18. P. Ramasamy, D.-M. Seo, S.-H. Kim, J. Kim, Effects of TiO2 shells on optical and thermal properties of silver nanowires, J. Mater. Chem., 22 (2012) 11651–11657.
  19. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy; Chastain, J, Perkin-Elmer Corp., Eden Prairie, MN, 1992.
  20. Z. Zhao, Y. Wang, J. Xu, Y. Wang, Mesoporous Ag/TiO2 nanocomposites with greatly enhanced photocatalytic performance towards degradation of methyl orange under visible light, RSC Adv., 5 (2015) 59297–59305.
  21. T. Wang, J. Wei, H. Shi, M. Zhou, Y. Zhang, Q. Chen, Z. Zhang, Preparation of electrospun Ag/TiO2 nanotubes with enhanced photocatalytic activity based on water/oil phase separation, Physica E, 86 (2017) 103–110.
  22. L. Liang, Y. Meng, L. Shi, J. Ma, J. Sun, Enhanced photocatalytic performance of novel visible light-driven Ag–TiO2/SBA-15 photocatalyst, Superlattices Microstruct., 73 (2014) 60–70.
  23. A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 95 (1995) 735–758.
  24. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal., B, 49 (2004) 1–14.
  25. K.-T. Byun, H.-Y. Kwak, Degradation of methylene blue under multibubble sonoluminescence condition, J. Photochem. Photobiol., A, 175 (2005) 45–50.
  26. L.-A. Lu, Y.-S. Ma, M. Kumar, J.-G. Lin, Photochemical degradation of carbofuran and elucidation of removal mechanism, Chem. Eng. J., 166 (2011) 150–156.