References
- Available at: http://unicef.in/PressReleases/30/Water-in-India-Situation-and-Prospects
- R.V. Wahlgren, Atmospheric water vapor processor designs for
potable water production: a review, Water Res., 35 (2001) 1–22.
- G.P. Narayan, J.H. Lienhard V, Chapter 9: Humidification
Dehumidification Desalination, J. Kucera, Ed., Desalination:
Water from Water, Wiley-Scrivener, Salem, MA, 2014,
pp. 425–472.
- G.P. Narayan, M.H. Sharqawy, E.K. Summers, J.H. Lienhard,
S.M. Zubair, M.A. Antar, The potential of solar-driven
humidification-dehumidification desalination for smallscale
decentralized water production, Renewable Sustainable
Energy Rev., 14 (2010) 1187–1201.
- M.T. Ghazal, U. Atikol, F. Egelioglu, An experimental study of
a solar humidifier for HDD systems, Energy Convers. Manage.,
82 (2014) 250–258.
- A.M.I. Mohamed, N.A. El-Minshawy, Theoretical investigation
of solar humidification-dehumidification desalination system
using parabolic trough concentrators, Energy Convers.
Manage., 52 (2011) 3112–3119.
- N.A.S. Elminshawy, F.R. Siddiqui, M.F. Addas, Experimental
and analytical study on productivity augmentation of a
novel solar humidification–dehumidification (HDH) system,
Desalination, 365 (2015) 36–45.
- A. Giwa, N. Akther, A. Al Housani, S. Haris, S.W. Hasan,
Recent advances in humidification dehumidification (HDH)
desalination processes: improved designs and productivity,
Renewable Sustainable Energy Rev., 57 (2016) 929–944.
- F.E. Ahmed, R. Hashaikeh, N. Hilal, Solar-powered desalination
– Technology, energy and future outlook, Desalination,
453 (2019) 54–76.
- Y. Ghalavand, M.S. Hatamipour, A. Rahimi, Humidification
compression desalination, Desalination, 341 (2014) 120–125.
- N. Niroomand, M. Zamen, M. Amidpour, Theoretical
investigation of using a direct contact dehumidifier in
humidification–dehumidification desalination unit based on an
open-air cycle, Desal. Water Treat., 54 (2014) 305–315.
- J.F. Klausner, Y. Li, R. Mei, Evaporative heat and mass transfer
for the diffusion driven desalination process, Heat Mass
Transfer, 42 (2005) 528–536.
- K. Wang, T. Hu, A.H. Hassabou, M. Spinnler, W. Polifke,
Analyzing and modeling the dynamic thermal behaviors
of direct contact condensers packed with PCM spheres,
Continuum Mech. Thermodyn., 25 (2012) 23–41.
- M.K. Abu Arabi, K.V. Reddy, Performance evaluation
of desalination processes based on the humidification/dehumidification cycle with different carrier gases, Desalination,
156 (2003) 281–293.
- M. Vlachogiannis, V. Bontozoglou, C. Georgalas, G. Litinas,
Desalination by mechanical compression of humid air,
Desalination, 122 (1999) 35–42.
- S.A. Nada, H.F. Elattar, A. Fouda, Experimental study for
hybrid humidification–dehumidification water desalination
and air conditioning system, Desalination, 363 (2015) 112–125.
- R.K. McGovern, G.P. Thiel, G. Prakash Narayan, S.M. Zubair,
J.H. Lienhard V, Performance limits of zero and single extraction
humidification–dehumidification desalination systems, Appl.
Energy, 102 (2013) 1081–1090.
- G.P. Narayan, M.H. Sharqawy, S. Lam, S.K. Das, J.H. Lienhard
V, Bubble columns for condensation at high concentrations of
noncondensable gas: heat‐transfer model and experiments,
AIChE J., 59 (2013) 1780–1790.
- B.M. Hamieh, J.R. Beckman, Seawater desalination using
dewvaporation technique: theoretical development and design
evolution, Desalination, 195 (2006) 1–13.
- B.M. Hamieh, J.R. Beckman, M.D. Ybarra, The dewvaporation
tower: an experimental and theoretical study with economic
analysis, Desal. Water Reuse, 10 (2000) 35–43.
- B.M. Hamieh, J.R. Beckman, M.D. Ybarra, Brackish and seawater
desalination using a 20 ft2 dewvaporation tower, Desalination,
140 (2001) 217–226.
- S. Ranganathan, Final Scientific/Technical Report for Program
Title: Solar Powered Dewvaporation Desalination System,
Polestar Technologies Inc., Needham Heights, MA, 2017.
- W.J. Minkowycz, E.M. Sparrow, Condensation heat‐transfer
in the presence of noncondensables: interfacial resistance,
superheating, variable properties, and diffusion, Int. J. Heat
Mass Transfer, 9 (1966) 1125–1144.
- E.W. Tow, J.H. Lienhard V, Experiments and modeling of bubble
column dehumidifier performance, Int. J. Therm. Sci., 80 (2014)
65–75.
- E.W. Tow, J.H. Lienhard V, Heat transfer to a horizontal cylinder
in a shallow bubble column, Int. J. Heat Mass Transfer, 79 (2014)
353–361.
- W.D. Deckwer, On the mechanism of heat transfer in bubble
column reactors, Chem. Eng. Sci., 35 (1980) 1341–1346.
- Z. Liu, W. Allen, M. Modera, Simplified thermal modeling of
indirect evaporative heat exchangers, HVAC&R Res., 19 (2013),
257–267.
- V. Narayanan, K. Murty, J. Jenks, Heat exchanger analysis
modified to account for a heat source, J. Heat Transfer, 130
(2008) 124502.
- J.C. Kloppers, D.G. Kröger, The Lewis factor and its influence
on the performance prediction of wet-cooling towers, Int. J.
Therm. Sci., 44 (2005) 879–884.
- American Society of Heating, Refrigerating, and Airconditioning
Engineers, 2001 ASHRAE Handbook Fundamentals, Atlanta,
GA, 2001.
- F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass
Transfer, 3rd ed., John Wiley & Sons, New York, NY, 1990.
- A.V. Kulkarni, J.B. Joshi, Design and selection of sparger for
bubble column reactor. Part I: performance of different spargers,
Chem. Eng. Res. Des., 89 (2011) 1972–1985.
- R.J. Moffat, Describing the uncertainties in experimental results,
Exp. Therm. Fluid Sci., 1 (1988) 3–17.