References

  1. Available at: http://unicef.in/PressReleases/30/Water-in-India-Situation-and-Prospects
  2. R.V. Wahlgren, Atmospheric water vapor processor designs for potable water production: a review, Water Res., 35 (2001) 1–22.
  3. G.P. Narayan, J.H. Lienhard V, Chapter 9: Humidification Dehumidification Desalination, J. Kucera, Ed., Desalination: Water from Water, Wiley-Scrivener, Salem, MA, 2014, pp. 425–472.
  4. G.P. Narayan, M.H. Sharqawy, E.K. Summers, J.H. Lienhard, S.M. Zubair, M.A. Antar, The potential of solar-driven humidification-dehumidification desalination for smallscale decentralized water production, Renewable Sustainable Energy Rev., 14 (2010) 1187–1201.
  5. M.T. Ghazal, U. Atikol, F. Egelioglu, An experimental study of a solar humidifier for HDD systems, Energy Convers. Manage., 82 (2014) 250–258.
  6. A.M.I. Mohamed, N.A. El-Minshawy, Theoretical investigation of solar humidification-dehumidification desalination system using parabolic trough concentrators, Energy Convers. Manage., 52 (2011) 3112–3119.
  7. N.A.S. Elminshawy, F.R. Siddiqui, M.F. Addas, Experimental and analytical study on productivity augmentation of a novel solar humidification–dehumidification (HDH) system, Desalination, 365 (2015) 36–45.
  8. A. Giwa, N. Akther, A. Al Housani, S. Haris, S.W. Hasan, Recent advances in humidification dehumidification (HDH) desalination processes: improved designs and productivity, Renewable Sustainable Energy Rev., 57 (2016) 929–944.
  9. F.E. Ahmed, R. Hashaikeh, N. Hilal, Solar-powered desalination – Technology, energy and future outlook, Desalination, 453 (2019) 54–76.
  10. Y. Ghalavand, M.S. Hatamipour, A. Rahimi, Humidification compression desalination, Desalination, 341 (2014) 120–125.
  11. N. Niroomand, M. Zamen, M. Amidpour, Theoretical investigation of using a direct contact dehumidifier in humidification–dehumidification desalination unit based on an open-air cycle, Desal. Water Treat., 54 (2014) 305–315.
  12. J.F. Klausner, Y. Li, R. Mei, Evaporative heat and mass transfer for the diffusion driven desalination process, Heat Mass Transfer, 42 (2005) 528–536.
  13. K. Wang, T. Hu, A.H. Hassabou, M. Spinnler, W. Polifke, Analyzing and modeling the dynamic thermal behaviors of direct contact condensers packed with PCM spheres, Continuum Mech. Thermodyn., 25 (2012) 23–41.
  14. M.K. Abu Arabi, K.V. Reddy, Performance evaluation of desalination processes based on the humidification/dehumidification cycle with different carrier gases, Desalination, 156 (2003) 281–293.
  15. M. Vlachogiannis, V. Bontozoglou, C. Georgalas, G. Litinas, Desalination by mechanical compression of humid air, Desalination, 122 (1999) 35–42.
  16. S.A. Nada, H.F. Elattar, A. Fouda, Experimental study for hybrid humidification–dehumidification water desalination and air conditioning system, Desalination, 363 (2015) 112–125.
  17. R.K. McGovern, G.P. Thiel, G. Prakash Narayan, S.M. Zubair, J.H. Lienhard V, Performance limits of zero and single extraction humidification–dehumidification desalination systems, Appl. Energy, 102 (2013) 1081–1090.
  18. G.P. Narayan, M.H. Sharqawy, S. Lam, S.K. Das, J.H. Lienhard V, Bubble columns for condensation at high concentrations of noncondensable gas: heat‐transfer model and experiments, AIChE J., 59 (2013) 1780–1790.
  19. B.M. Hamieh, J.R. Beckman, Seawater desalination using dewvaporation technique: theoretical development and design evolution, Desalination, 195 (2006) 1–13.
  20. B.M. Hamieh, J.R. Beckman, M.D. Ybarra, The dewvaporation tower: an experimental and theoretical study with economic analysis, Desal. Water Reuse, 10 (2000) 35–43.
  21. B.M. Hamieh, J.R. Beckman, M.D. Ybarra, Brackish and seawater desalination using a 20 ft2 dewvaporation tower, Desalination, 140 (2001) 217–226.
  22. S. Ranganathan, Final Scientific/Technical Report for Program Title: Solar Powered Dewvaporation Desalination System, Polestar Technologies Inc., Needham Heights, MA, 2017.
  23. W.J. Minkowycz, E.M. Sparrow, Condensation heat‐transfer in the presence of noncondensables: interfacial resistance, superheating, variable properties, and diffusion, Int. J. Heat Mass Transfer, 9 (1966) 1125–1144.
  24. E.W. Tow, J.H. Lienhard V, Experiments and modeling of bubble column dehumidifier performance, Int. J. Therm. Sci., 80 (2014) 65–75.
  25. E.W. Tow, J.H. Lienhard V, Heat transfer to a horizontal cylinder in a shallow bubble column, Int. J. Heat Mass Transfer, 79 (2014) 353–361.
  26. W.D. Deckwer, On the mechanism of heat transfer in bubble column reactors, Chem. Eng. Sci., 35 (1980) 1341–1346.
  27. Z. Liu, W. Allen, M. Modera, Simplified thermal modeling of indirect evaporative heat exchangers, HVAC&R Res., 19 (2013), 257–267.
  28. V. Narayanan, K. Murty, J. Jenks, Heat exchanger analysis modified to account for a heat source, J. Heat Transfer, 130 (2008) 124502.
  29. J.C. Kloppers, D.G. Kröger, The Lewis factor and its influence on the performance prediction of wet-cooling towers, Int. J. Therm. Sci., 44 (2005) 879–884.
  30. American Society of Heating, Refrigerating, and Airconditioning Engineers, 2001 ASHRAE Handbook Fundamentals, Atlanta, GA, 2001.
  31. F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 3rd ed., John Wiley & Sons, New York, NY, 1990.
  32. A.V. Kulkarni, J.B. Joshi, Design and selection of sparger for bubble column reactor. Part I: performance of different spargers, Chem. Eng. Res. Des., 89 (2011) 1972–1985.
  33. R.J. Moffat, Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci., 1 (1988) 3–17.