References

  1. L.Z. Lee, M.A.A. Zaini, Metals chloride-activated castor bean residue for methylene blue removal, J. Teknol., 74 (2015) 65–69.
  2. J.L. Wan, H.P. Deng, J. Shi, L. Zhou, T. Su, Synthesized magnetic manganese ferrite nanoparticles on activated carbon for sulfamethoxazole removal, Clean – Soil Air Water, 42 (2014) 1199–1207.
  3. P.D. Rocha, A.S. Franca, L.S. Oliveira, Batch and column studies of phenol adsorption by an activated carbon based on acid treatment of corn cobs, IACSIT Int. J. Eng. Technol., 7 (2015) 459–464.
  4. H.I. Albroomi, M.A. Elsayed, A. Baraka, M.A. Abdelmaged, Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones, Appl. Water Sci., 7 (2017) 2063–2074.
  5. Q.Z. Yong, M.A.A. Zaini, Adsorption of rhodamine b by palm kernel shell adsorbents, J. Eng. Technol., 7 (2016) 1–16.
  6. O. Vincent, N. Solomon, D. Jude, Study of kinetics of chemically activated carbon produced from palm kernel shell, Br. J. Appl. Sci. Technol., 16 (2016) 1–9.
  7. B.O. Ogunsile, I.F. Odesola, O. Oluwole, A.H. Labulo, Production and characterization of activated carbon from chemically treated agricultural wastes, J. Appl. Sci. Res., 10 (2014) 29–35.
  8. S.W. ul Hasan. F.N. Ani, Review of limiting issues in industrialization and scale-up of microwave-assisted activated carbon production, Ind. Eng. Chem. Res., 53 (2014) 12185−12191.
  9. S.-H. Kow, M.R. Fahmi, C.Z.A. Abidin, S.-A. Ong, N. Ibrahim, Regeneration of spent activated carbon from industrial application by NaOH solution and hot water, Desal. Water Treat., 57 (2016) 29137–29142.
  10. A.R. Yacob, S.T. Hanapi, V. Inderan, Nano tungsten carbide supported on carbon from palm kernel shell in remediation of chlorofluorocarbon (CFC12), International Conference on Computer Engineering and Technology, Singapore, Singapore, 2009, pp. 556–563.
  11. M.A.A. Zaini, L.L. Zhi, T.S. Hui, Activated Carbon-Doped Magnetic Nanoparticles for Wastewater Treatment, R.K. Gautam, M.C. Chattopadhyaya, Eds., Advanced Nanomaterials for Wastewater Remediation, CRC press, Taylor & Francis Group, Florida, 2017, pp. 277–290.
  12. S.L. Zhang, L.C. Tao, M. Jiang, G.J. Gou, Z.W. Zhou, Singlestep synthesis of magnetic activated carbon from peanut shell, Mater. Lett., 157 (2015) 281–284.
  13. D. Tolga, S. Busetty, O. Yunus, Investigation of the potential of activated and magnetic activated carbon produced from Turkish lignite as gold adsorbents, Asian J. Appl. Sci., 7 (2014) 486–498.
  14. W.-D. Oh, S.-K. Lua, Z.L. Dong, T.-T. Lim, Performance of magnetic activated carbon composite as peroxymonosulfate activator and regenerable adsorbent via sulfate radicalmediated oxidation processes, J. Hazard Mater., 284 (2015) 1–9.
  15. K.V. Plakas, A.J. Karabelas, A study on heterogeneous fenton regeneration of powdered activated carbon impregnated with iron oxide nanoparticles, Global NEST J., 18 (2016) 259–268.
  16. M.H. Do, N.H. Phan, T.D. Nguyen, T.T.S. Pham, V.K. Nguyen, T.T.T. Vu, T.K.P. Nguyen, Activated carbon/Fe3O4 nanoparticle composite: fabrication, methyl orange removal and regeneration by hydrogen peroxide, Chemosphere, 85 (2011) 1269–1276.
  17. D.H. Quinones, A. Rey, P.M. Alvarez, F.J. Beltran, P.K. Plucinski, Enhanced activity and reusability of TiO2 loaded magnetic activated carbon for solar photocatalytic ozonation, Appl. Catal., B, 144 (2014) 96–106.
  18. A.L. Cazetta, O. Pezoti, K.C. Bedin, T.L. Silva, A.P. Junior, T. Asefa, V.C. Almeida, Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes, ACS Sustainable Chem. Eng., 4 (2016) 1058–1068.
  19. A. Kwaghger, E. Adejoh, Optimization of conditions for the preparation of activated carbon from mango nuts using ZnCl2, Int. J. Eng. Res. Dev., 1 (2012) 1–7.
  20. A.S. Devi, M.H. Kalavathy, L.R. Miranda, Optimization of the process parameters for the preparation of activated carbon from low cost phoenix dactylifera using response surface methodology, Austin Chem. Eng., 2 (2015) 1021–1029.
  21. L.L. Zhi, M.A.A. Zaini, Adsorption properties of cationic rhodamine b dye onto metals chloride-activated castor bean residue carbons, Water Sci. Technol., 75 (2017) 864–880.
  22. A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ onto phosphoric acid modified rice husk, IOSR J. Appl. Chem., 3 (2012) 38–45.
  23. O. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem., 63 (1959) 1024–1026.
  24. H.J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces, Wiley-VCH, Weinheim, 2003.
  25. R. Subha, C. Namasivayam, Modelling of adsorption isotherms and kinetics of 2,4,6-trichlorophenol onto microporous ZnCl2 activated coir pith carbon, Environ. Eng. Manage. J., 18 (2008) 275–280.
  26. S. Suteu, T. Malutan, Industrial cellolignin wastes as adsorbent for removal of methylene blue dye from aqueous solutions, Bioresources, 8 (2013) 427–446.
  27. H. Huang, G. Zhang, Adsorption of rhodamine B onto a yellowbrown soil: kinetics, thermodynamics, and role of soil organic matter, Environ. Prog. Sustainable Energy, 34 (2015) 1936–1403.
  28. T. Thuan, B.T.P. Quynh, T.D. Nguyen, V.T.T. Ho, L.G. Bach, Response surface methodology approach for optimization of Cu2+, Ni2+ and Pb2+ adsorption using KOH-activated carbon from banana peel, Surf. Interfaces, 6 (2017) 209–217.
  29. M.H. Shahavi, M. Hosseini, M. Jahanshahi, G.N. Darzi, Optimization of encapsulated clove oil particle size with biodegradable shell using design expert methodology, Pak. J. Biotechnol., 12 (2015) 149–160.
  30. L.Z. Lee, M.A.A. Zaini, Metal chloride salts in the preparation of activated carbon and their hazardous outlook, Desal. Water Treat., 57 (2016) 16078–16085.
  31. M. Hema, S. Arivoli, Comparative study on the adsorption kinetics and thermodynamics of dyes onto acid activated low cost carbon, Int. J. Phys. Sci., 2 (2007) 10–17.
  32. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Enhancement of basic dye adsorption uptake from aqueous solutions using chemically modified oil palm shell activated carbon, Colloids Surf., A, 318 (2008) 88–96.
  33. M.A.A. Zaini, M.A.C. Yunus, S.H.M. Setapar, Y. Amano, M. Machida, Effect of heat treatment on copper removal onto manure-compost-activated carbon, Desal. Water Treat., 51 (2013) 5608–5616.
  34. B. Jeyaraj, Y. Subbareddy, C. Jayakumar, K.S. Nagaraja, S. Valli, Equilibrium, Kinetic and Thermodynamic Study of Adsorption of Rhodamine b from Aqueous Solution by Activated Carbon from Peltophorum pterocarpum Leaf, Wastewater and Biosolids Treatment and Reuse, 8–14 June, Otranto, Italy, 2014.
  35. O. Amrhar, H. Nassali, M.S. Elyoubi, Application of nonlinear regression analysis to select the optimum absorption isotherm for methylene blue adsorption onto natural illitic clay, Bull. Soc. R. Sci. Liège, 84 (2015) 116–130.
  36. M. Mohammadi, A.J. Hassani, A.R. Mohamed, G.D. Najafpour, Removal of rhodamine b from aqueous solution using palm shell-based activated carbon: adsorption and kinetic studies, J. Chem. Eng. Data, 55 (2010) 5777–5785.
  37. B. Zargar, H. Parham, M. Rezazade, Fast removal and recovery of methylene blue by activated carbon modified with magnetic iron oxide nanoparticles, J. Chin. Chem. Soc., 58 (2011) 694–699.
  38. R. Alfaro-Cuevas-Villanueva, A.R. Hidalgo-Vazquez, C.J.C. Penagos, R. Cortes-Matinez, Thermodynamic, kinetic, and equilibrium parameters for the removal of lead and cadmium from aqueous solutions with calcium alginate beads, Sci. World J., 2014 (2014) 1–9.