References
- B. Ammundsen, J. Paulsen, Novel lithium-ion cathode materials
based on layered manganese oxides, Adv. Mater.,13 (2001)
943–956.
- J.W. An, D.J. Kang, K.T. Tran, M.J. Kim, T. Lim, T. Tran, Recovery
of lithium from Uyuni salar brine, Hydrometallurgy, 117–118
(2012) 64–70.
- G.P. Zhang, W. Qin, Y.Z. Tan, Y.Y. Dai, Separation of magnesium
and lithium by solvent extraction using di-(2-ethylhexyl)
phosphoric acid (D2EHPA), J. Tsinghua Univ. Sci. Technol.,
50 (2010) 430–433.
- G.P. Xiao, K.F. Tong, L.S. Zhou, J.L. Xiao, S.Y. Sun, P. Li,
J.G. Yu, Adsorption and desorption behavior of lithium ion in
spherical PVC-MnO2 ion sieve, Ind. Eng. Chem. Res., 51 (2012)
10921–10929.
- X.M. Wen, P.H. Ma, C.L. Zhu, Q. He, X.C. Deng, Preliminary
study on recovering lithium chloride from lithium-containing
waters by nanofiltration, Sep. Purif. Technol., 49 (2006) 230–236.
- X.L. Wang, T. Tsuru, M. Togoh, S. Nakao, S. Kimura, Evaluation
of pore structure and electrical properties of nanofiltration
membranes, J. Chem. Eng. Japan, 28 (1995) 186–192.
- X.L. Wang, T. Tsuru, S. Nakao, S. Kimura, The electrostatic and
steric-hindrance model for the transport of charged solutes
through nanofiltration membranes, J. Membr. Sci., 135 (1997)
19–32.
- B. Van der Bruggen, C. Vandecasteele, Removal of pollutants
from surface water and groundwater by nanofiltration:
overview of possible applications in the drinking water
industry, Environ. Pollut., 122 (2003) 435–445.
- G. Yang, H. Shi, W.Q. Liu, W.H. Xing, N.P. Xu, Investigation
of Mg2+/Li+ separation by nanofiltration, Chin. J. Chem. Eng.,
19 (2011) 586–591.
- A. Somrani, A.H. Hamzaoui, M. Pontie, Study on lithium
separation from salt lake brines by nanofiltration (NF) and
low pressure reverse osmosis (LPRO), Desalination, 317 (2013)
184–192.
- S.Y. Sun, L.J. Cai, X.Y. Nie, X. Song, J.G. Yu, Separation of
magnesium and lithium from brine using a Desal nanofiltration
membrane, J. Water Process Eng., 7 (2015) 210–217.
- X.H. Li, C.J. Zhang, S.N. Zhang, J.X. Li, B.Q. He, Z.Y. Cui,
Preparation and characterization of positively charged
polyamide composite nanofiltration hollow fiber membrane
for lithium and magnesium separation, Desalination, 369 (2015)
26–36.
- W. Li, C. Shi, A. Zhou, X. He, Y.W. Sun, J.L. Zhang, A positively
charged composite nanofiltration membrane modified by
EDTA for LiCl/MgCl2 separation, Sep. Purif. Technol., 186
(2017) 233–242.
- H.Z. Zhang, Z.L. Xu, H. Ding, Y.J. Tang, Positively charged
capillary nanofiltration membrane with high rejection for Mg2+
and Ca2+ and good separation for Mg2+ and Li+, Desalination,
420 (2017) 158–166.
- Q. Ye, F. Zhou, W.M. Liu, Bioinspired catecholic chemistry for
surface modification, Chem. Soc. Rev., 40 (2011) 4244–4258.
- S. Hong, Y.S. Na, S. Choi, I.T. Song, W.Y. Kim, H. Lee,
Non-covalent self-assembly and covalent polymerization
co-contribute to polydopamine formation, Adv. Funct. Mater.,
22 (2012) 4711–4717.
- M.M. Li, J. Xu, C.Y. Chang, C.C. Feng, L.L. Zhang, Y.Y. Tang,
C.J. Gao, Bioinspired fabrication of composite nanofiltration
membrane based on the formation of DA/PEI layer followed by
cross-linking, J. Membr. Sci., 459 (2014) 62–71.
- S. Azari, L. Zou, Using zwitterionic amino acid L-DOPA to
modify the surface of thin film composite polyamide reverse
osmosis membranes to increase their fouling resistance,
J. Membr. Sci., 401–402 (2012) 68–75.
- S.P. Sun, T. Alan Hatton, S.Y. Chan, T.S. Chung, Novel thin-film
composite nanofiltration hollow fiber membranes with double
repulsion for effective removal of emerging organic matters
from water, J. Membr. Sci., 401–402 (2012) 152–162.
- R.N. Zhang, Y.L. Su, X.T. Zhao, Y.F. Li, J.J. Zhao, Z.Y. Jiang,
A novel positively charged composite nanfiltration membrane
prepared by bio-inspired adhesion of polydopamine and
surface grafting of poly(ethylene imine), J. Membr. Sci.,
470 (2014) 9–17.
- Y. Lv, H.C. Yang, H.Q. Liang, L.S. Wan, Z.K. Xu, Nanofiltration
membranes via co-deposition of polydopaminepolyethylenimine
followed by cross-linking, J. Membr. Sci.,
476 (2015) 50–58.
- J. Sun, C.H. Wang, Y.Z. Wang, S.X. Ji, W.F. Liu, Immobilization
of carbonic anhydrase on polyethylenimine/dopamine
codeposited membranes, J. Appl. Polym. Sci., 136 (2019) 47784,
doi: 10.1002/app.47784.
- F.Y. Zhao, Y.L. Ji, X.D. Weng, Y.F. Mi, C.C. Ye, Q.F. An, C.J. Gao,
High-flux positively charged nanocomposite nanofiltration
membranes filled with poly(dopamine) modified multiwall
carbon nanotubes, Appl. Mater. Interfaces, 8 (2016) 6693–6700.
- J. Schaep, B. Van der Bruggen, C. Vandecasteele, D. Wilms,
Influence of ion size and charge in nanofiltration, Sep. Purif.
Technol., 14 (1998) 155–162.
- L.C. Li, B.G. Wang, H.M. Tan, T.L. Chen, J.P. Xu, A novel
nanofiltration membrane prepared with PAMAM and TMC
by in situ interfacial polymerization on PEK-C ultrafiltration
membrane, J. Membr. Sci., 269 (2006) 84–93.
- D.R. Lide, CRC Handbook of Chemistry and Physics, CRC
Press, Inc., Florida, USA, 2002, pp. 93–94.
- J. Xu, Z. Wang, J.X. Wang, S.C. Wang, Positively charged
aromatic polyamide reverse osmosis membrane with high
anti-fouling property prepared by polyethylenimine grafting,
Desalination, 365 (2015) 398–406.
- S. Veríssimo, K.V. Peinemann, J. Bordado, Influence of the
diamine structure on the nanofiltration performance, surface
morphology and surface charge of the composite polyamide
membranes, J. Membr. Sci., 279 (2006) 266–275.
- Y.C. Chiang, Y.Z. Hsub, R.C. Ruaan, C.J. Chuang, K.L. Tung,
Nanofiltration membranes synthesized from hyperbranched
polyethyleneimine, J. Membr. Sci., 326 (2009) 19–26.
- C.L. Liu, H.C. Mao, J.F. Zheng, S.B. Zhang, In situ surface
crosslinked tight ultrafiltration membrane prepared by onestep
chemical reaction-involved phase inversion process
between activated PAEK-COOH and PEI, J. Membr. Sci.,
538 (2017) 58–67.