References

  1. B. Ammundsen, J. Paulsen, Novel lithium-ion cathode materials based on layered manganese oxides, Adv. Mater.,13 (2001) 943–956.
  2. J.W. An, D.J. Kang, K.T. Tran, M.J. Kim, T. Lim, T. Tran, Recovery of lithium from Uyuni salar brine, Hydrometallurgy, 117–118 (2012) 64–70.
  3. G.P. Zhang, W. Qin, Y.Z. Tan, Y.Y. Dai, Separation of magnesium and lithium by solvent extraction using di-(2-ethylhexyl) phosphoric acid (D2EHPA), J. Tsinghua Univ. Sci. Technol., 50 (2010) 430–433.
  4. G.P. Xiao, K.F. Tong, L.S. Zhou, J.L. Xiao, S.Y. Sun, P. Li, J.G. Yu, Adsorption and desorption behavior of lithium ion in spherical PVC-MnO2 ion sieve, Ind. Eng. Chem. Res., 51 (2012) 10921–10929.
  5. X.M. Wen, P.H. Ma, C.L. Zhu, Q. He, X.C. Deng, Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration, Sep. Purif. Technol., 49 (2006) 230–236.
  6. X.L. Wang, T. Tsuru, M. Togoh, S. Nakao, S. Kimura, Evaluation of pore structure and electrical properties of nanofiltration membranes, J. Chem. Eng. Japan, 28 (1995) 186–192.
  7. X.L. Wang, T. Tsuru, S. Nakao, S. Kimura, The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes, J. Membr. Sci., 135 (1997) 19–32.
  8. B. Van der Bruggen, C. Vandecasteele, Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry, Environ. Pollut., 122 (2003) 435–445.
  9. G. Yang, H. Shi, W.Q. Liu, W.H. Xing, N.P. Xu, Investigation of Mg2+/Li+ separation by nanofiltration, Chin. J. Chem. Eng., 19 (2011) 586–591.
  10. A. Somrani, A.H. Hamzaoui, M. Pontie, Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO), Desalination, 317 (2013) 184–192.
  11. S.Y. Sun, L.J. Cai, X.Y. Nie, X. Song, J.G. Yu, Separation of magnesium and lithium from brine using a Desal nanofiltration membrane, J. Water Process Eng., 7 (2015) 210–217.
  12. X.H. Li, C.J. Zhang, S.N. Zhang, J.X. Li, B.Q. He, Z.Y. Cui, Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation, Desalination, 369 (2015) 26–36.
  13. W. Li, C. Shi, A. Zhou, X. He, Y.W. Sun, J.L. Zhang, A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation, Sep. Purif. Technol., 186 (2017) 233–242.
  14. H.Z. Zhang, Z.L. Xu, H. Ding, Y.J. Tang, Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+, Desalination, 420 (2017) 158–166.
  15. Q. Ye, F. Zhou, W.M. Liu, Bioinspired catecholic chemistry for surface modification, Chem. Soc. Rev., 40 (2011) 4244–4258.
  16. S. Hong, Y.S. Na, S. Choi, I.T. Song, W.Y. Kim, H. Lee, Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation, Adv. Funct. Mater., 22 (2012) 4711–4717.
  17. M.M. Li, J. Xu, C.Y. Chang, C.C. Feng, L.L. Zhang, Y.Y. Tang, C.J. Gao, Bioinspired fabrication of composite nanofiltration membrane based on the formation of DA/PEI layer followed by cross-linking, J. Membr. Sci., 459 (2014) 62–71.
  18. S. Azari, L. Zou, Using zwitterionic amino acid L-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance, J. Membr. Sci., 401–402 (2012) 68–75.
  19. S.P. Sun, T. Alan Hatton, S.Y. Chan, T.S. Chung, Novel thin-film composite nanofiltration hollow fiber membranes with double repulsion for effective removal of emerging organic matters from water, J. Membr. Sci., 401–402 (2012) 152–162.
  20. R.N. Zhang, Y.L. Su, X.T. Zhao, Y.F. Li, J.J. Zhao, Z.Y. Jiang, A novel positively charged composite nanfiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine), J. Membr. Sci., 470 (2014) 9–17.
  21. Y. Lv, H.C. Yang, H.Q. Liang, L.S. Wan, Z.K. Xu, Nanofiltration membranes via co-deposition of polydopaminepolyethylenimine followed by cross-linking, J. Membr. Sci., 476 (2015) 50–58.
  22. J. Sun, C.H. Wang, Y.Z. Wang, S.X. Ji, W.F. Liu, Immobilization of carbonic anhydrase on polyethylenimine/dopamine codeposited membranes, J. Appl. Polym. Sci., 136 (2019) 47784, doi: 10.1002/app.47784.
  23. F.Y. Zhao, Y.L. Ji, X.D. Weng, Y.F. Mi, C.C. Ye, Q.F. An, C.J. Gao, High-flux positively charged nanocomposite nanofiltration membranes filled with poly(dopamine) modified multiwall carbon nanotubes, Appl. Mater. Interfaces, 8 (2016) 6693–6700.
  24. J. Schaep, B. Van der Bruggen, C. Vandecasteele, D. Wilms, Influence of ion size and charge in nanofiltration, Sep. Purif. Technol., 14 (1998) 155–162.
  25. L.C. Li, B.G. Wang, H.M. Tan, T.L. Chen, J.P. Xu, A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane, J. Membr. Sci., 269 (2006) 84–93.
  26. D.R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Inc., Florida, USA, 2002, pp. 93–94.
  27. J. Xu, Z. Wang, J.X. Wang, S.C. Wang, Positively charged aromatic polyamide reverse osmosis membrane with high anti-fouling property prepared by polyethylenimine grafting, Desalination, 365 (2015) 398–406.
  28. S. Veríssimo, K.V. Peinemann, J. Bordado, Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamide membranes, J. Membr. Sci., 279 (2006) 266–275.
  29. Y.C. Chiang, Y.Z. Hsub, R.C. Ruaan, C.J. Chuang, K.L. Tung, Nanofiltration membranes synthesized from hyperbranched polyethyleneimine, J. Membr. Sci., 326 (2009) 19–26.
  30. C.L. Liu, H.C. Mao, J.F. Zheng, S.B. Zhang, In situ surface crosslinked tight ultrafiltration membrane prepared by onestep chemical reaction-involved phase inversion process between activated PAEK-COOH and PEI, J. Membr. Sci., 538 (2017) 58–67.