References

  1. Z.T. Yao, X.S. Ji, P.K. Sarker, J.H. Tang, L.Q. Ge, M.S. Xia, Y.Q. Xi, A comprehensive review on the applications of coal fly ash, Earth Sci. Rev., 141 (2015) 105–121.
  2. H. Zhang, L. Sun, T. Sun, Leaching of heavy metals from artificial soils composed of sewage sludge and fly ash, Bull. Environ. Contam. Toxicol., 88 (2012) 406–412.
  3. Cz. Rosik-Dulewska, U. Karwaczyńska, T. Ciesielczuk, Heavy metals in granulated sludge-ash mixtures used as components of fertilizes, Chem. Ind., 92 (2013) 1520–1524.
  4. E. Wikarek-Paluch, Cz. Rosik-Dulewska, U. Karwaczyńska, Mobility of selected heavy metals in municipal sludge, Mobilność wybranych metali ciężkich w komunalnych osadach ściekowych, Annu. Set Environ. Prot., 18 (2016) 181–192.
  5. D.C. Su, J.W.C. Wong, Chemical speciation and phytoavailability of Zn, Cu, Ni, and Cd in soil amended with fly ash stabilized sewage sludge, Environ. Int., 29 (2004) 895–900.
  6. B. Lokeshappa, A.K. Dikshit, Y. Luo, T.J. Hutchinson, D.E. Giammar, Assessing bioaccessible fractions of arsenic, chromium, lead, selenium and zinc in coal fly ashes, Int. J. Environ. Sci. Technol., 11 (2014) 1601–1610.
  7. S. Tiwari, B. Kumari, S.N. Singh, Evaluation of metal mobility/ immobility in fly ash induced by bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dumps, Bioresour. Technol., 99 (2008) 1305–1310.
  8. C.A. Papadimitriou, I. Haritou, P. Samaras, I. Zouboulis, Evaluation of leaching and ecotoxicological properties of sewage sludge–fly ash mixtures, Environ. Res., 106 (2008) 340–348.
  9. M.N. Islam, J.-H. Park, Immobilization and reduction of bioavailability of lead in shooting range soil through hydrothermal treatment, J. Environ. Manage., 191 (2017) 172–178.
  10. T. Ciesielczuk, Cz. Rosik-Dulewska, J. Poluszyńska, D. Miłek, A. Szewczyk, I. Sławińska, Acute toxicity of experimental fertilizers made of spent coffee grounds, Waste Biomass Valorization, 9 (2018b) 2157–2164.
  11. M. Izquierdo, X. Quero, Leaching behavior of elements from coal combustion fly ash: an overview, Int. J. Coal Geol., 94 (2012) 54–66.
  12. A. Kumar, S.R. Samadder, V. Kumar, Assessment of groundwater contamination risk due to fly ash leaching using column study, Environ. Earth Sci., 78 (2019), https://doi. org/10.1007/s12665-018-8009-y.
  13. T. Ciesielczuk, J. Poluszyńska, A. Szewczyk, Cz. Rosik- Dulewska, M. Sporek, Dynamic of components leachate from experimental fertilizers in leaching test, J. Ecol. Eng., 19 (2018) 194–203.
  14. W.D. Chanaka Udayanga, A. Veksha, A. Giannis, G. Lisak, V.W.-C. Chang, T.-T. Lim, Fate and distribution of heavy metals during thermal processing of sewage sludge, Fuel, 226 (2018) 721–744.
  15. K. Karlfeldt, B.-M. Steenari, Assessment of metal mobility in MSW incineration ashes using water as the reagent, Fuel, 86 (2007) 1983–1993.
  16. C.N. Lange, M. Flues, G. Hiromoto, M.E.G. Boscov, I.M.C. Camargo, Long-term leaching of As, Cd, Mo, Pb, and Zn from coal fly ash in column test, Environ. Monit. Assess., 191 (2019), https://doi.org/10.1007/s10661-019-7798-0.
  17. J. Kalembkiewicz, E. Sitarz-Palczak, L. Zapała, A study of the chemical forms or species of manganese found in coal fly ash and soil, Microchem. J., 90 (2008) 37–43.
  18. E. Wiśniowska, M. Włodarczyk-Makuła, The effect of selected acidic or alkaline chemical agents amendment on leachability of selected heavy metals from sewage sludge, Sci. Total Environ., 633 (2018) 463–469.
  19. R. Świetlik, M. Trojanowska, M.A. Jóźwiak, Evaluation of the distribution of heavy metals and their chemical forms in ESPfractions of fly ash, Fuel Process. Technol., 95 (2012) 109–118.