References

  1. J. Gawdzik, J. Długosz, M. Urbaniak, General characteristics of the quantity and quality of sewage sludge from selected wastewater treatment plants in the Świętokrzyskie Province, Environ. Prot. Eng., 41 (2015) 107–117.
  2. F. Shahbazi, S. Ghasemi, H. Sodaiezadeh, K. Ayaseh, R. Zamani-Ahmadmahmoodi, The effect of sewage sludge on heavy metal concentrations in wheat plant (Triticumaestivum L.), Environ. Sci. Pollut. Res., 24 (2017) 15634–15644.
  3. EEC, Council Directive on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge is Used in Agriculture, Official Journal of the European Communities 86/278/EEC No L 181/6, 1986.
  4. Council Decision 2003/33/EC of 19 December 2002 Establishing Criteria and Procedures for the Acceptance of Waste at Landfills Pursuant to Article 16 of and Annex II to Directive 1999/31/EC, Journal of Laws of 16 January, 2003, pp. 27–49.
  5. A. Ben Hassen Trabelsi, R. Zayoud, K. Zaafouri, Sewage Sludge as Source of Energy: Experimental and Numerical Investigations of Thermochemical Conversion of Sewage Sludge via Pyrolysis, A. Kallel, M. Ksibi, H. Ben Dhia, N. Khélifi, editors, Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, EMCEI 2017, Advances in Science, Technology and Innovation (IEREK Interdisciplinary Series for Sustainable Development), Springer, Cham, 2018.
  6. Y. Zhai, W. Peng, G. Zeng, Z. Fu, Y. Lan, H. Chen, C. Wang, X. Fan, Pyrolysis characteristics and kinetics of sewage sludge for different sizes and heating rates, J. Therm. Anal. Calorim., 107 (2012) 1015–1022.
  7. M. Staf, P. Buryan, Slow pyrolysis of pre-dried sewage sludge, Chem. Pap., 11 (2016) 1479–1492.
  8. S. Niu, M. Chen, Y. Li, T. Lu, Combustion characteristics of municipal sewage sludge with different initial moisture contents, J. Therm. Anal. Calorim., 129 (2017) 1189–1199.
  9. Y. Jin, Y. Li, F. Liu, Combustion effects and emission characteristics of SO2, CO, NOx and heavy metals during co-combustion of coal and dewatered sludge, Front. Environ. Sci. Eng., 1 (2016) 201–210.
  10. M. Hartman, M. Pohořelý, O. Trnka, Behaviour of inorganic constituents of municipal sewage sludge during fluidized-bed combustion, Chem. Pap., 61 (2007) 181–185.
  11. J. Latosińska, J. Gawdzik, The impact of combustion technology of sewage sludge on mobility of heavy metals in sewage sludge ash, Ecol. Chem. Eng. S, 3 (2014) 465–475.
  12. H. Lin, X. Ma, Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator, Waste Manage., 3 (2012) 561–567.
  13. M. Nadal, M. Schuhmacher, J.L. Domingo, Cost–benefit analysis of using sewage sludge as alternative fuel in a cement plant: a case study, Environ. Sci. Pollut. Res., 3 (2009) 322–328.
  14. C. Freda, G. Cornacchia, A. Romanelli, V. Valerio, M. Grieco, Sewage sludge gasification in a bench scale rotary kiln, Fuel, 212 (2018) 88–94.
  15. S. Arnout, E. Nagels, Modelling thermal phosphorus recovery from sewage sludge ash, Calphad, 55 (2016) 26–31.
  16. S. Donatello, D. Tong, C.R. Cheeseman, Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA), Waste Manage., 30 (2010) 1634–1642.
  17. H. Herzel, O. Krüger, L. Hermann, C. Adam, Sewage sludge ash - a promising secondary phosphorus source for fertilizer production, Sci. Total Environ., 542 (2016) 1136–1143.
  18. J. Latosińska, The influence of temperature and time of sewage sludge incineration on the mobility of heavy metals, Environ. Prot. Eng., 4 (2017) 105–122.
  19. D. Vouk, D. Nakic, N. Stirmer, Influence of combustion temperature on the performance of sewage sludge ash as a supplementary cementitious material, J. Mater. Cycles Waste Manage., 3 (2018) 1458–1467.
  20. D.F. Lin, H.L. Luo, J.F. Cheng, M.Z. Zhuang, Strengthening tiles manufactured with sewage sludge ash replacement by adding micro carbon powder, Mater. Struct., 9 (2016) 3559–3567.
  21. M.M. AI-Sharif, M.F. Attom, A geoenvironmental application of burned wastewater sludge ash in soil stabilization, Environ. Earth Sci., 5 (2014) 2453–2463.
  22. J. Wierzbowska, S. Sienkiewicz, P. Sternik, M.K. Busse, Using ash from incineration of municipal sewage sludge to fertilize virgina fanpetals, Ecol. Chem. Eng. A, 22 (2015) 497–507.
  23. S. Donatello, M. Tyrer, C.R. Cheeseman, EU landfill waste acceptance criteria and EU hazardous waste directive compliance testing of incinerated sewage sludge ash, Waste Manage., 30 (2010) 63–71.
  24. C. Vogel, C. Adam, Heavy metal removal from sewage sludge ash by thermochemical treatment with gaseous hydrochloric acid, Environ. Sci. Technol., 45 (2011) 7445–7450.
  25. J. Werther, T. Ogada, Sewage sludge combustion, Prog. Energy Combust. Sci., 25 (1999) 55–116.
  26. A. Sałata, Ł. Bąk, L. Dąbek, E. Ozimina, Assessment of the degree of pollution of sediments from the rainstorm sewer system in the urbanised catchment, Desal. Water Treat., 57 (2016) 1478–1489.
  27. J. Górski, Ł. Bąk, A. Sałata, K. Górska, A. Rabajczyk, Changes of heavy metal concentration in rainfall wastewater in urban catchment, Desal. Water Treat., 117 (2018) 257–266.
  28. J. Gawdzik, Mobility of Heavy Metals in Sewage Sludge, Monograph, Kielce University of Technology, Kielce, 2013.
  29. L. Dąbrowska, Speciation of heavy metals in non-volatile solids of sewage sludge, Desal. Water Treat., 52 (2014) 3761–3766.
  30. F. Yan, Z. Niu, Evaluation model of major heavy metals pollution factors in coastal waters and sediments, Desal. Water Treat., 149 (2019) 335–340.
  31. Z. Xiao, X. Yuan, L. Leng, L. Jiang, X. Chen, W. Zhibin, P. Xin, Z. Jiachao, G. Zeng, Risk assessment of heavy metals from combustion of pelletized municipal sewage sludge, Environ. Sci. Pollut. Res. Int., 23 (2016) 3934–3942.
  32. Z. Zhang, A. Li, X. Wang, L. Zhang, Stabilization/solidification of municipal solid waste incineration fly ash via co-sintering with waste-derived vitrified amorphous slag, Waste Manage., 56 (2016) 238–245.
  33. J. He, H. Zhang, H. Zhang, X. Guo, M. Song, J. Zhang, X. Li, Ecological risk and economic loss estimation of heavy metals pollution in the Beijiang River, Ecol. Chem. Eng. S, 21 (2014) 189–199.
  34. M. Maanan, M. Saddik, M. Maanan, M. Chaibi, O. Assobhei, B. Zourarah, Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco, Ecol. Indic., 48 (2015) 616–626.
  35. J. Fu, C. Zhao, Y. Luo, C. Liu, G.Z. Kyzas, Y. Luo, D. Zhao, S. An, H. Zhu, Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors, J. Hazard. Mater., 270 (2014) 102–109.
  36. Monitoring of Agricultural Soil Chemistry in Poland in the Years of 2015–2017, Institute of Soil Science and Plant Cultivation, State Research Institute in Puławy, 2017.
  37. G. Müller, Index of geo-accumulation in sediments of the Rhine River, Geol. J., 3 (1969) 108–118.
  38. H. Huang, X. Yuan, G. Zeng, H. Zhu, H. Li, Z. Liu, H. Jiang, L. Leng, W. Bi, Quantitative evaluation of heavy metals’ pollution hazards in liquefaction residues of sewage sludge, Bioresour. Technol., 102 (2011) 10346–10351.
  39. K. Loska, D. Wiechula, I. Korus, Metal contamination of farming soils affected by industry, Environ. Int., 30 (2004) 159–165.
  40. J. Zhang, Y. Tian, J. Zhang, N. Li, L. Kong, M. Yu, Distribution and risk assessment of heavy metals in sewage sludge after ozonation, Environ. Sci. Pollut. Res., 24 (2017) 5118–5125.
  41. J. Singh, B. Lee, Reduction of environmental availability and ecological risk of heavy metals in automobile shredder residues, Ecol. Eng., 81 (2015) 76–81.
  42. The Regulation of the Minister of Health of 7 December 2017 on the Quality of Water Intended for Human Consumption (Journal of Laws of 2017, No 0, Item 2294).
  43. The Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption.
  44. P. Panagos, M. Van Liedekerke, Y. Yigini, L. Montanarella, Contaminated sites in Europe: review of the current situation based on data collected through a European network, J. Environ. Public Health, 2013 (2013) 1–12.
  45. P. Panagos, C. Ballabio, E. Lugato, A. Jones, P. Borrelli, S. Scarpa, A. Orgiazzi, L. Montanarella, Potential sources of anthropogenic copper inputs to European agricultural soils, Sustainability, 10 (2018), 1–17.