References
- I. Schneider, The importance and impact of process water,
Filtr. + Sep., 54 (2017) 32–35.
- L. Schweitzer, J. Noblet, Green Chemistry: An Inclusive Approach,
Elsevier Inc., Amsterdam, Netherlands, 2017, pp. 261–290.
- L. Joseph, B.-M. Jun, J.R.V. Flora, C.M. Park, Y. Yoon, Removal
of heavy metals from water sources in the developing world
using low-cost materials: a review, Chemosphere, 229 (2019)
142–159.
- J.-J. Kim, Y.-S. Kim, V. Kumar, Heavy metal toxicity: an update
of chelating therapeutic strategies, J. Trace Elem. Med. Biol.,
54 (2019) 226–231.
- E. Sikorska-Sobiegraj, S. Zieliński, Adsorption of heavy
metals on activated carbon in the presence of selected organic
compounds, Przem. Chem., 84 (2005) 254–256 (in Polish).
- Z. Dębowski, J. Lach, Removal of heavy metal cations from
water on activated carbons, Ochr. Środowiska, 2 (1996) 23–25
(in Polish).
- J. Lach, E. Okoniewska, L. Stępniak, E. Ociepa, Impact of the
ultrasonic field on the adsorption of cadmium cations, Ochr.
Środowiska, 15 (2013) 2142–2157 (in Polish).
- M. Karnib, A. Kabbani, H. Holail, Z. Olama, Heavy metals
removal using activated carbon, silica and silica activated
carbon composite, Energy Procedia, 50 (2014) 113–120.
- D. Eeshwarasinghe, P. Loganathan, S. Vigneswaran, Simultaneous
removal of polycyclic aromatic hydrocarbons and
heavy metals from water using granular activated carbon,
Chemosphere, 223 (2019) 616–627.
- A.A. Peláez-Cid, V. Romero-Hernández, A.M. Herrera-
González, A. Bautista-Hernández, O. Coreño-Alonso, Synthesis
of activated carbons from black sapote seeds, characterization
and application in the elimination of heavy metals and textile
dyes, Chin. J. Chem. Eng., 28 (2020) 613–623.
- V. Nejadshafiee, M.R. Islami, Adsorption capacity of heavy
metal ions using sultone-modified magnetic activated carbon
as a bio-adsorbent, Mater. Sci. Eng., C, 101 (2019) 42–52.
- A. Fouladi Tajar, T. Kaghazchi, M. Soleimani, Adsorption of
cadmium from aqueous solutions on sulfurized activated
carbon prepared from nut shells, J. Hazard. Mater., 165 (2009)
1159–1164.
- U.I. Gaya, E. Otene, A.H. Abdullah, Adsorption of aqueous
Cd(II) and Pb(II) on activated carbon nanopores prepared by
chemical activation of doum palm shell, Springerplus, 4 (2015)
1–18.
- S. Abbasizadeh, A.R. Keshtkar, M.A. Mousavian, Sorption of
heavy metal ions from aqueous solution by a novel cast PVA/TiO2 nanohybrid adsorbent functionalized with amine groups,
J. Ind. Eng. Chem., 20 (2014) 1656–1664.
- M.M. Tehrani, S. Abbasizadeh, A. Alamdari, S.E. Mousavi,
Prediction of simultaneous sorption of copper(II), cobalt(II)
and zinc(II) contaminants from water systems by a novel multifunctionalized
zirconia nanofiber, Desal. Water Treat., 62 (2017)
403–417.
- M. Bozorgi, S. Abbasizadeh, F. Samani, S.E. Mousavi,
Performance of synthesized cast and electrospun PVA/
chitosan/ZnO-NH2 nano-adsorbents in single and simultaneous
adsorption of cadmium and nickel ions from wastewater,
Environ. Sci. Pollut. Res., 25 (2018) 17457–17472.
- M. Shafiee, M. Ali Abedi, S. Abbasizadeh, R.K. Sheshdeh,
S.E. Mousavi, S. Shohani, Effect of zeolite hydroxyl active
site distribution on adsorption of Pb(II) and Ni(II) pollutants
from water system by polymeric nanofibers, Sep. Sci. Technol.,
55 (2020) 1–18.
- Y. Zhu, W.H. Fan, T.T. Zhou, X.M. Li, Removal of chelated heavy
metals from aqueous solution: a review of current methods and
mechanisms, Sci. Total Environ., 678 (2019) 253–266.
- H. Chen, Y. Zhao, Q.Y. Yang, Q. Yan, Preparation of polyammonium/
sodium dithiocarbamate for the efficient removal
of chelated heavy metal ions from aqueous environments,
J. Environ. Chem. Eng., 6 (2018) 2344–2354.
- K. Yang, G. Wang, X.M. Chen, X. Wang, F.L. Liu, Treatment
of wastewater containing Cu2+ using a novel macromolecular
heavy metal chelating flocculant xanthated chitosan, Colloids
Surf., A, 558 (2018) 384–391.
- P. Racho, P. Phalathip, Modified nylon fibers with amino
chelating groups for heavy metal removal, Energy Procedia, 118
(2017) 195–200.
- B. Spiess, E. Harraka, D. Wencker, P. Laugel, Complexing
properties of nitrilotri(methylenephosphonic) acid with various
transition and heavy metals in a 10:90 ethanol—water medium,
Polyhedron, 6 (1987) 1247–1249.
- D. Kołodyńska, M. Gęca, M. Siek, Z. Hubicki, Nitrilotris
(methylenephosphonic) acid as a complexing agent in sorption
of heavy metal ions on ion exchangers, Chem. Eng. J., 215–216
(2013) 948–958.
- R.B. Rios, F.M. Stragliotto, H.R. Peixoto, A.E.B. Torres,
M. Bastos-Neto, D.C.S. Azevedo, C.L. Cavalcante Jr., Studies on
the adsorption behavior of CO2-CH4 mixtures using activated
carbon, Braz. J. Chem. Eng., 30 (2013) 939–951.
- M. Kwiatkowski, J. Duda, Fast multivariant analysis of the
adsorption isotherm of the carbon dioxide and methane, Przem.
Chem., 93 (2014) 878–881 (in Polish).
- N. Tzabar, H.J.M. ter Brake, Adsorption isotherms and
Sips models of nitrogen, methane, ethane, and propane on
commercial activated carbons and polyvinylidene chloride,
Adsorption, 22 (2016) 901–914.
- H. Fałtynowicz, P. Hodurek, J. Kaczmarczyk, M. Kułażyński,
M. Łukaszewicz, Hydrolysis of surfactin over activated carbon,
Bioorg. Chem., 93 (2019) 102896.