References
- US EPA, Risk Assessment Guidance for Superfund, Vol. 1,
Human Health Evaluation Manual, Part B. Development
of Risk-Based Preliminary Remediation Goals, Interim.
EPA/540R-92/003, Publication 9285.7-01B, Office of Emergency
and Remedial Response, U.S. Environmental Protection Agency,
Washington, DC, 1991.
- US EPA, Risk Assessment Guidance for Superfund, Vol. 1,
Human Health Evaluation Manual, Part A. Interim Final,
EPA/540/1-89/002, Office of Emergency and Remedial Response,
U.S. Environmental Protection Agency, Washington, DC, 1998.
- US EPA, Risk Assessment Guidance for Superfund, Vol. 1,
Human Health Evaluation Manual, Part E. Supplemental
Guidance for Dermal Risk Assessment, Final, EPA/540/R99/005,
OSWER 9285.7-02EP, PB 99-963312, Office of Superfund
Remediation and Technology Innovation, U.S. Environmental
Protection Agency, Washington, DC, 2004.
- Journal of Laws 2017, Item 2297 Regulation of the Minister of
Health on the Manner, Procedure and Deadlines for Applying
to the National Health Fund and Making Available the National
Health Fund Information on the Healthcare Services (in Polish).
- Council Directive 98/83/EC of 3 November 1998 on the Quality
of Water Intended for Human Consumption, with Its Latest
Amendments Including Commission Directive (EU) 2015/1787
of 6 October 2015, Official Journal of the European Union, 2015.
- L. Fewtrell, J. Bartram, Water Quality: Guidelines Standards
Health, Assessment of Risk Management for Water-Related
Infectious Disease, World Health Organization Series, IWA
Publishing, WHO, London, 2001 (reprinted 2002).
- WHO, Guidelines for Drinking-Water Quality, 4th ed., World
Health Organization, Geneva, 2011.
- J. Rak, B. Tchórzewska-Cieślak, Water Quality Control from the
Perspective of Water Supply System Users’ Safety, O. Ivanov,
Ed., Applications and Experiences of Quality Control, Intech,
London/Rijeka, 2011, pp. 361–375.
- J. Rak, Some aspects of risk management in waterworks,
Ochr. Sr., 29 (2007), 61–64.
- J. Rak, A study of the qualitative methods for risk assessment
in water supply systems, Environ. Prot. Eng., 29 (2003) 123–133.
- A. Nowacka, M. Wlodarczyk-Makula, B. Tchorzewska-Cieslak,
J. Rak, The ability to remove the priority PAHs from water
during coagulation process including risk assessment, Desal.
Water Treat., 3 (2016) 1297–1309.
- B. Tchorzewska-Cieslak, M. Wlodarczyk-Makula, J. Rak,
Safety analysis of the wastewater treatment process in the field
of organic pollutants including PAHs, Desal. Water Treat.,
72 (2017) 146–155.
- X. Li, X. Shang, T. Luo, X. Du, Y. Wang, Q. Xie, N. Matsuura,
J. Chen, K. Kadokami, Screening and health risk of organic
micropollutants in rural groundwater of Liaodong Peninsula,
China, Environ. Pollut., 218 (2016) 739–748.
- L. Kong, K. Kadokami, H.T. Duong, H.T.C. Chau, Screening
of 1300 organic micro-pollutants in groundwater from Beijing
and Tianjin, North China, Chemosphere, 165 (2016) 221–230.
- R. Meffe, I. de Bustamante, Emerging organic contaminants
in surface water and groundwater: a first overview of the
situation in Italy, Sci. Total. Environ., 15, 481 (2014) 280–295.
- A. Jurado, E. Vàzquez-Suñé, J. Carrera, M. López de Alda,
E. Pujades, D. Barceló, Emerging organic contaminants in
groundwater in Spain: a review of sources, recent occurrence
and fate in a European context, Sci. Total Environ., 440 (2012)
82–94.
- Raport – Ocena Stanu JCWPd Zagrożonych wg Danych z 2017
r. Państwowy Instytut Geologiczny, Warsaw, 2018, Available at:
http://mjwp.gios.gov.pl/raporty-art/2017.html (in Polish).
- J. Fick, H. Söderström, R.H. Lindberg, C. Phan, M. Tysklind,
D.G. Larsson, Contamination of surface, ground, and drinking
water from pharmaceutical production, Environ. Toxicol.
Chem., 28 (2009) 2522–2527.
- D.A. McEachran, D. Shea, W. Bodnar, E.G. Nichols,
Pharmaceutical occurrence in groundwater and surface waters
in forests land-applied with municipal wastewater, Environ.
Toxicol. Chem., 35 (2016) 898–905.
- Q. Sui, X. Cao, S. Lu, W. Zhao, Z. Qiu, G. Yu, Occurrence,
sources and fate of pharmaceuticals and personal care products
in the groundwater: a review, Emerg. Contam., 1 (2015) 14–24.
- Available at: https://pubchem.ncbi.nlm.nih.gov/compound/
Phenanthrene#section=Computed-Properties
- Available at: https://pubchem.ncbi.nlm.nih.gov/compound/
Fluoranthene#section=Computed-Properties
- Available at: https://pubchem.ncbi.nlm.nih.gov/compound/
Dieldrin#section=2D-Structure
- Available at: https://pubchem.ncbi.nlm.nih.gov/compound/
Diuron
- Available at: https://pubchem.ncbi.nlm.nih.gov/compound/
Salicylic-acid
- Available at: https://pubchem.ncbi.nlm.nih.gov/compound/
Caffeine
- Available at: https://pubchem.ncbi.nlm.nih.gov/compound/Sulf
amethoxazole#section=Clinical-Laboratory-Methods
- R.H. Adamson, The acute lethal dose 50 (LD50) of caffeine in
albino rats, Regul. Toxicol. Pharm., 80 (2016) 274–286.
- Caffeine, Safety Data Sheet, Sigma Aldrich, Available at: https://
www.sigmaaldrich.com/MSDS/
- I. Fekete-Kertész, Z. Kunglné-Nagy, K. Gruiz, Á. Magyar,
É. Farkas, M. Molnár, Assessing toxicity of organic aquatic
micropollutants based on the total chlorophyll content of Lemna
minor as a sensitive endpoint, Period. Polytech. Chem. Eng.,
59 (2015) 262–271.
- Material Safety Data Sheet, Salicylic acid. Available at:
https://fscimage.fishersci.com/msds/20315.htm
- Salicylic Acid, Safety Data Sheet, Thermofisher.
- Salicylic Acid Safety Data Sheet, Rhodia.
- D. Zivna, P. Sehonova, L. Plhalova, P. Marsalek, J. Blahova,
M. Prokes, L. Divisova, V. Stancova, R. Dobsikova, F. Tichy,
Z. Siroka, Z. Svobodova, Effect of salicylic acid on early life
stages of common carp (Cyprinus carpio), Environ. Toxicol.
Pharmacol., 40 (2015) 319–325.
- R. Krieger, Handbook of Pesticide Toxicology: Principles,
Academic Press, San Diego, CA, 2001.
- Proposed Default Guideline Values for the Protection of
Aquatic Ecosystems: Diuron – Freshwater, 2017, the State of
Queensland, Department of Science, Information Technology
and Innovation, 2017
- D.E. Robinson, C. Henry, A. Mansingh, Toxicity, bioaccumulation
and tissue partitioning of dieldrin by the shrimp,
macrobrachium faustinum de sassure, in fresh and brackish
waters of Jamaica, J. Environ. Technol., 23 (2002) 1275–1284.
- Dieldrin. Available at: https://sitem.herts.ac.uk/aeru/ppdb/en/
Reports/226.htm (Ref: ENT 16225).
- Available at: https://books.google.pl/books?id=CA2hCgAAQ
BAJ&pg=PA13&lpg=PA13&dq=Dieldrine+NOEC&source= bl&
ots=SrsSZCpc67&sig=ACfU3U3DZG5OTH1YsVPDvCY2I0
PC1Nb88g&hl=pl&sa=X&ved=2ahUKEwjF3cGbt5LnAhWC
BBAIHcjXDJoQ6AEwBXoECAoQAQ#v=onepage&q=Dieldrine
%20NOEC&f=false
- E.M.J. Verbruggen, R. van Herwijnen, Environmental Risk for
Phenanthrene, RIVM Letter Report 601357007/2011, National
Institute for Public Health and the Environment, 2011.
- Fluoranthene_EQS_v20101221.doc, Fluranthene Factsheet.
- T. Di Lorenzo, A. Castaño-Sánchez, W.D. Di Marzio, P. García-Doncel, M.L. Nozal, D.M.P. Galassi, S. Iepure, The role of
freshwater copepods in the environmental risk assessment of
caffeine and propranolol mixtures in the surface water bodies
of Spain, Chemosphere, 220 (2019) 227–236.
- PPCP Monitoring in the Nordic Countries – Status Report,
TemaNord 2012:519, Nordic Council of Ministers, Kailow
Express ApS, København, 2012. Available at: http://www.
miljodirektoratet.no/old/klif/publikasjoner/2216/ta2216.pdf
- Z.H. Li, T. Randak, Residual pharmaceutically active
compounds (PhACs) in aquatic environment – status, toxicity
and kinetics: a review, Vet. Med., 52 (2009) 295–314.
- Available at: https://books.google.pl/books?id=kl16CwAAQ
BAJ&pg=PA70&lpg=PA70&dq=LOEC+Sulfamethoxazole
&source=bl&ots=_mQGDjXnuz&sig=ACfU3U2AJiuzHnbzR
NgrqVKEz-VEDO9zg&hl=pl&sa=X&ved=2ahUKEwi0iaKG5p7
nAhUlmYsKHRxKDl4Q6AEwBXoECAkQAQ#v=onepage
&q=LOEC%20Sulfamethoxazole&f=false
- C.Y. Chen, Y.J. Wang, C.F. Yang, Estimating low-toxic-effect
concentrations in closed-system algal toxicity tests, Ecotoxicol.
Environ. Saf., 72 (2009) 1514–1522.
- European Chemicals Agency ECHA, Available at: echa.europa.
eu › registration-dossier › registered-dossier
- Caffeine. Available at: https://echa-term.echa.europa.eu/fi/web/
guest/registration-dossier/-/registered-dossier/10085/6/2/6
- Available at: https://books.google.pl/books?id=N-peXPyJs
4C&pg=PA58&lpg=PA58&dq=Caffeine+NOEC+
fish&source=bl&ots=mekciG8Z2u&sig=ACfU3U3mJa7Zg
NyRpTxdQtytwJbIg_UpLg&hl=pl&sa=X&ved=2ahUKE
wi_tZqK667nAhXpAhAIHSHBACo4ChDoATAJegQICBAB
#v=onepage&q=Caffeine NOEC fish&f=false
- Canadian Water Quality Guidelines for the Protection of
Aquatic Life, Guidance on the Site-Specific Application of
Water Quality Guidelines in Canada: Procedures for Deriving
Numerical Water Quality Objectives, Canadian Environmental
Quality Guidelines, Canadian Council of Ministers of the
Environment, 2003.
- PPDB: Pesticide Properties DataBase. Available at: https://sitem.
herts.ac.uk/aeru/ppdb/en/Reports/226.htm dieldrin (Ref: ENT
16225).
- Material Safety Data Sheet Salicylic acid. Available at: https://fscimage.fishersci.com/msds/20315.htm
- A. Murray, J. Traylor, Caffeine Toxicity, StatPearls Publishing
LLC. Available at: https://www.ncbi.nlm.nih.gov/books/NBK532910/2020
- Caffeine, Safety Data Sheet, Merck. Available at: https://
www.merckmillipore.com/PL/pl/product/Caffeine-CAS-58-08-2-Calbiochem,EMD_BIO-205548
- European Chemicals Agency ECHA, Phenanthrene as a
Substance of Very High Concern Because of Its Vpvb1
(Article 57e) Properties. Available at: https://echa.europa.eu/documents/10162/abc44d64-7bfe-ee88-d8a6-7ea30a448360
- Developing a Set of Reference Chemicals for Use in
Biodegradability Tests for Assessing the Persistency of
Chemicals. Available at: http://cefic-lri.org/wp-content/uploads/uploads/Project%20publications/MCC_007_Eco12_Final_
Report.pdf
- I. Salihu, Y.S. Mohd, A.S. Mohd, A.R. Nor Arina, A.K. Khalilah,
K. Ariff, A.A. Siti, Bacteria degradation of caffeine: a review,
Asian J. Plant Biol., 2 (2014) 24–33.
- Salicylic Acid. Available at: https://echa.europa.eu/registrationdossier/-/
registered-dossier/14544/5/3/2
- Environmental Risk Assessment Summary Sulfamethoxazole,
F. Hoffmann-La Roche Ltd., Group SHE (LSO), ANH, 2018.
- J.M. Anderson, Biodegradation of Polymers in Encyclopaedia
of Materials: Science and Technology, 2001. Available at:
https://www.sciencedirect.com/topics/physics-and-astronomy/biodegradation
- C.P. Gerba, Chapter 14: Risk Assessment, I. Pepper, C. Gerba,
M. Brusseau, Eds., Environmental and Pollution Science, eBook,
Academic Press, Elsevier, 2011.
- Florida Department of Health, Updated Health Advisory Levels
Toxicology Values DRAFT pdf.
- EPA, Integrated Risk Information System (IRIS), Phenanthrene.
- EPA, Integrated Risk Information System (IRIS), Fluoranthene.
- Available at: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.
cfm?substance_nmbr=225
- EQS Datasheet, Environmental Quality standard, Sulfame-
thoxazole.
- NJDEP, Toxicity Factors for Salycylic Acid.
- Available at: https://echa.europa.eu/registration-dossier/-/registered-dossier/14544/7/8
- Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706294/
- Available at: https://www.cancer.org/latest-news/coffee-andcancer-what-the-research-really-shows.html
- Available at: https://www.epa.gov/iris
- United States Environmental Protection Agency. Available at:
https://www.epa.gov/pesticide-science-and-assessing
pesticide-risks/technical-overview-ecological-risk-assessmentrisk
- Available at: https://www.chemsafetypro.com/Topics/CRA/
How_to_Calculate_Hazard_Quotients_(HQ)_and_Risk_
Quotients_(RQ).html
- Cited from Frąk M., Wiśniewska M., Impact of pesticides
(fenitrothion, tolylfluanid) on Daphnia magna on the base of
chronic toxicity tests file:///C:/Users/U%C5%BCytkownik/Downloads/art19_167.pdf (in Polish)
- H. Gupta, Removal of phenanthrene from water using activated
carbon developed from orange rind, Int. J. Sci. Res. Environ.
Sci., 3 (2015) 248–255.
- Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC
5990792/#!po=40.6250
- Available at: https://www.researchgate.net/publication/281953
674_Removal_of_Phenanthrene_from_Water_Using_Activated_Carbon_Developed_from_Orange_Rind
- Available at: https://journals.sagepub.com/doi/full/10.1177/0263
617418756407
- Available at: https://www.sciencedirect.com/science/article/pii/
S138358660600325X
- Available at: https://iwaponline.com/wst/article-abstract/
doi/10.2166/wst.2020.011/71886/Optimisation-of-the-sorption-of-
selected?redirectedFrom=fulltext
- Available at: https://open.library.ubc.ca/cIRcle/collections/
ubctheses/24/items/1.0368678
- M A. Nkansah, A.A. Christy, T. Barth, G.W. Francis, The use
of lightweight expanded clay aggregate (LECA) as sorbent for
PAHs removal from water, J. Hazard. Mater., 217–218 (2012)
360–365.
- M.S. Hedayati, Removal of PAHs Compounds from Aqueous
Solution with Modified Zeolites, The University of British
Columbia, 2018.
- Available at: https://books.google.pl/books?id=ivLiNH-NjOcC&
pg=PA175&lpg=PA175&dq=adsorption+of+fluoranthene+by+
activated+carbon&source=bl&ots=MEz9gUQLeL&sig=ACfU
3U2xQI9O3PcOr4iBRfiePXAUQlGHdA&hl=pl&sa=X&ved=2ah
UKEwiA05mN5tTnAhWhlosKHWK2A6s4ChDoATAJeg
QIChAB#v=onepage&q=adsorption%20of%20fluoranthene%
20by%20activated%20carbon&f=false
- E.R. Bandala, J.A. Octaviano, Removal of aldrin, dieldrin,
heptachlor, and heptachlor epoxide using activated carbon
and/or Pseudomonas fluorescens free cell cultures, J. Environ. Sci.
Health., Part B, 41 (2006) 553–569.
- M.P. Ormad, N. Miguel, A. Claver, J.M. Matesanz, J.L. Ovelleiro,
Pesticides removal in the process of drinking water production,
Chemosphere, 71 (2008) 97–106.
- M. Aoudia, A. Al-Sabahi, S. Al-Kindy, M. Al-Sheily, F. Marikar,
Micellar Enhanced Ultrafiltration for the Removal of Polycyclic
Aromatic Hydrocarbons (PAHs) Mixtures in Underground
Contaminated Water in Oman. Available at: https://journals.
squ.edu.om/index.php/squjs/article/view/374
- Y. Zhang, B. Van der Bruggen, G.X. Chen, L. Braeken,
C. Vandecasteele, Removal of pesticides by nanofiltration: effect
of the water matrix, Sep. Purif. Technol., 38 (2004) 163–172.
- J. Mallavialle, P.E. Odendaal, M.R. Wiesner, Water Treatment
Membrane Processes, McGraw-Hill, New York, NY; San Francisco,
CA; Washington, DC, 1996.
- J.K. Shim, I.S. Park, J.Y. Kim, Use of Amphiphilic Polymer
Nanoparticles as a Nano-Absorbent for Enhancing Efficiency
of Micelle-enhanced Ultrafiltration Process. Available at:
https://www.cheric.org/research/tech/periodicals/view.
php?seq=692371
- X.D. Wang, H.H. Zhang, L. Wang, X.F. Guo, Study of Effects
of Ionic Strength and pH on PAHs Removal. Available at:
https://books.google.pl/books?id=0COsCQAAQBAJ&pg=P
A89&lpg=PA89&dq=phenanthrene+removal+by+nanofiltr
ation&source=bl&ots=59UeKyq6CG&sig=ACfU3U3T0Y7c
QcBj8J9yuYh8blT-bOsu_g&hl=pl&sa=X&ved=2ahUKEwi3_
qjq8sXoAhVE_SoKHWyCAxcQ6AEwBHoECAkQAQ#v=
onepage&q=phenanthrene%20removal%20by%20
nanofiltration&f=false
- L. Zhu, Rejection of organic micropollutants by clean and
fouled nanofiltration membranes, J. Chem., 2015 (2015),
doi: 10.1155/2015/934318.
- M. Smol, M. Włodarczyk-Makuła, K. Mielczarek, J. Bohdziewicz,
D. Włóka, The use of reversed osmosis in the removal of PAHs
from municipal landfill leachate, Polycyclic Aromat. Compd.,
36 (2016) 20–39.
- M. Smol, M. Włodarczyk-Makuła, The effectiveness in the
removal of PAHs from aqueous solutions in physical and
chemical processes: a review, Polycyclic Aromat. Compd.,
37 (2017) 292–313.
- Available at: https://www.maxwaterflow.com/About-Reverse-
Osmosis_c_1438.html
- Available at: https://www.epa.gov/pesticide-science-and-asses
sing-pesticide-risks/finalization-guidance-incorporation-watertreatment#_
2_3_d_2
- Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai,
J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of
micropollutants in the aquatic environment and their fate
and removal during wastewater treatment, Sci. Total Environ.,
473–474 (2014) 619–641.
- Bodzek, Micropollutants Removal from Water Environment
by Membrane Processes, L. Dąbrowska, M. Włodarczyk-
Makuła, Eds., Micropollutants in Wastewater, Waste and in
the Environment, Monograph, Czestochowa University of
Technology, Czestochowa, Poland, 2018, pp. 62–81.
- K. Miksch, E. Felis, J. Kalka, A. Sochacki, J. Drzymała,
Micropollutants in the Environment: Occurrence, Interactions
and Elimination, Monograph Publication of Middle Pomeranian
Scientific Society of The Environment Protection, Koszalin, 2016
(in Polish).