References

  1. US EPA, Risk Assessment Guidance for Superfund, Vol. 1, Human Health Evaluation Manual, Part B. Development of Risk-Based Preliminary Remediation Goals, Interim. EPA/540R-92/003, Publication 9285.7-01B, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, DC, 1991.
  2. US EPA, Risk Assessment Guidance for Superfund, Vol. 1, Human Health Evaluation Manual, Part A. Interim Final, EPA/540/1-89/002, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, DC, 1998.
  3. US EPA, Risk Assessment Guidance for Superfund, Vol. 1, Human Health Evaluation Manual, Part E. Supplemental Guidance for Dermal Risk Assessment, Final, EPA/540/R99/005, OSWER 9285.7-02EP, PB 99-963312, Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, Washington, DC, 2004.
  4. Journal of Laws 2017, Item 2297 Regulation of the Minister of Health on the Manner, Procedure and Deadlines for Applying to the National Health Fund and Making Available the National Health Fund Information on the Healthcare Services (in Polish).
  5. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption, with Its Latest Amendments Including Commission Directive (EU) 2015/1787 of 6 October 2015, Official Journal of the European Union, 2015.
  6. L. Fewtrell, J. Bartram, Water Quality: Guidelines Standards Health, Assessment of Risk Management for Water-Related Infectious Disease, World Health Organization Series, IWA Publishing, WHO, London, 2001 (reprinted 2002).
  7. WHO, Guidelines for Drinking-Water Quality, 4th ed., World Health Organization, Geneva, 2011.
  8. J. Rak, B. Tchórzewska-Cieślak, Water Quality Control from the Perspective of Water Supply System Users’ Safety, O. Ivanov, Ed., Applications and Experiences of Quality Control, Intech, London/Rijeka, 2011, pp. 361–375.
  9. J. Rak, Some aspects of risk management in waterworks, Ochr. Sr., 29 (2007), 61–64.
  10. J. Rak, A study of the qualitative methods for risk assessment in water supply systems, Environ. Prot. Eng., 29 (2003) 123–133.
  11. A. Nowacka, M. Wlodarczyk-Makula, B. Tchorzewska-Cieslak, J. Rak, The ability to remove the priority PAHs from water during coagulation process including risk assessment, Desal. Water Treat., 3 (2016) 1297–1309.
  12. B. Tchorzewska-Cieslak, M. Wlodarczyk-Makula, J. Rak, Safety analysis of the wastewater treatment process in the field of organic pollutants including PAHs, Desal. Water Treat., 72 (2017) 146–155.
  13. X. Li, X. Shang, T. Luo, X. Du, Y. Wang, Q. Xie, N. Matsuura, J. Chen, K. Kadokami, Screening and health risk of organic micropollutants in rural groundwater of Liaodong Peninsula, China, Environ. Pollut., 218 (2016) 739–748.
  14. L. Kong, K. Kadokami, H.T. Duong, H.T.C. Chau, Screening of 1300 organic micro-pollutants in groundwater from Beijing and Tianjin, North China, Chemosphere, 165 (2016) 221–230.
  15. R. Meffe, I. de Bustamante, Emerging organic contaminants in surface water and groundwater: a first overview of the situation in Italy, Sci. Total. Environ., 15, 481 (2014) 280–295.
  16. A. Jurado, E. Vàzquez-Suñé, J. Carrera, M. López de Alda, E. Pujades, D. Barceló, Emerging organic contaminants in groundwater in Spain: a review of sources, recent occurrence and fate in a European context, Sci. Total Environ., 440 (2012) 82–94.
  17. Raport – Ocena Stanu JCWPd Zagrożonych wg Danych z 2017 r. Państwowy Instytut Geologiczny, Warsaw, 2018, Available at: http://mjwp.gios.gov.pl/raporty-art/2017.html (in Polish).
  18. J. Fick, H. Söderström, R.H. Lindberg, C. Phan, M. Tysklind, D.G. Larsson, Contamination of surface, ground, and drinking water from pharmaceutical production, Environ. Toxicol. Chem., 28 (2009) 2522–2527.
  19. D.A. McEachran, D. Shea, W. Bodnar, E.G. Nichols, Pharmaceutical occurrence in groundwater and surface waters in forests land-applied with municipal wastewater, Environ. Toxicol. Chem., 35 (2016) 898–905.
  20. Q. Sui, X. Cao, S. Lu, W. Zhao, Z. Qiu, G. Yu, Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: a review, Emerg. Contam., 1 (2015) 14–24.
  21. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/ Phenanthrene#section=Computed-Properties
  22. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/ Fluoranthene#section=Computed-Properties
  23. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/ Dieldrin#section=2D-Structure
  24. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/ Diuron
  25. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/ Salicylic-acid
  26. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/ Caffeine
  27. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/Sulf amethoxazole#section=Clinical-Laboratory-Methods
  28. R.H. Adamson, The acute lethal dose 50 (LD50) of caffeine in albino rats, Regul. Toxicol. Pharm., 80 (2016) 274–286.
  29. Caffeine, Safety Data Sheet, Sigma Aldrich, Available at: https:// www.sigmaaldrich.com/MSDS/
  30. I. Fekete-Kertész, Z. Kunglné-Nagy, K. Gruiz, Á. Magyar, É. Farkas, M. Molnár, Assessing toxicity of organic aquatic micropollutants based on the total chlorophyll content of Lemna minor as a sensitive endpoint, Period. Polytech. Chem. Eng., 59 (2015) 262–271.
  31. Material Safety Data Sheet, Salicylic acid. Available at: https://fscimage.fishersci.com/msds/20315.htm
  32. Salicylic Acid, Safety Data Sheet, Thermofisher.
  33. Salicylic Acid Safety Data Sheet, Rhodia.
  34. D. Zivna, P. Sehonova, L. Plhalova, P. Marsalek, J. Blahova, M. Prokes, L. Divisova, V. Stancova, R. Dobsikova, F. Tichy, Z. Siroka, Z. Svobodova, Effect of salicylic acid on early life stages of common carp (Cyprinus carpio), Environ. Toxicol. Pharmacol., 40 (2015) 319–325.
  35. R. Krieger, Handbook of Pesticide Toxicology: Principles, Academic Press, San Diego, CA, 2001.
  36. Proposed Default Guideline Values for the Protection of Aquatic Ecosystems: Diuron – Freshwater, 2017, the State of Queensland, Department of Science, Information Technology and Innovation, 2017
  37. D.E. Robinson, C. Henry, A. Mansingh, Toxicity, bioaccumulation and tissue partitioning of dieldrin by the shrimp, macrobrachium faustinum de sassure, in fresh and brackish waters of Jamaica, J. Environ. Technol., 23 (2002) 1275–1284.
  38. Dieldrin. Available at: https://sitem.herts.ac.uk/aeru/ppdb/en/ Reports/226.htm (Ref: ENT 16225).
  39. Available at: https://books.google.pl/books?id=CA2hCgAAQ BAJ&pg=PA13&lpg=PA13&dq=Dieldrine+NOEC&source= bl& ots=SrsSZCpc67&sig=ACfU3U3DZG5OTH1YsVPDvCY2I0 PC1Nb88g&hl=pl&sa=X&ved=2ahUKEwjF3cGbt5LnAhWC BBAIHcjXDJoQ6AEwBXoECAoQAQ#v=onepage&q=Dieldrine %20NOEC&f=false
  40. E.M.J. Verbruggen, R. van Herwijnen, Environmental Risk for Phenanthrene, RIVM Letter Report 601357007/2011, National Institute for Public Health and the Environment, 2011.
  41. Fluoranthene_EQS_v20101221.doc, Fluranthene Factsheet.
  42. T. Di Lorenzo, A. Castaño-Sánchez, W.D. Di Marzio, P. García-Doncel, M.L. Nozal, D.M.P. Galassi, S. Iepure, The role of freshwater copepods in the environmental risk assessment of caffeine and propranolol mixtures in the surface water bodies of Spain, Chemosphere, 220 (2019) 227–236.
  43. PPCP Monitoring in the Nordic Countries – Status Report, TemaNord 2012:519, Nordic Council of Ministers, Kailow Express ApS, København, 2012. Available at: http://www. miljodirektoratet.no/old/klif/publikasjoner/2216/ta2216.pdf
  44. Z.H. Li, T. Randak, Residual pharmaceutically active compounds (PhACs) in aquatic environment – status, toxicity and kinetics: a review, Vet. Med., 52 (2009) 295–314.
  45. Available at: https://books.google.pl/books?id=kl16CwAAQ BAJ&pg=PA70&lpg=PA70&dq=LOEC+Sulfamethoxazole &source=bl&ots=_mQGDjXnuz&sig=ACfU3U2AJiuzHnbzR NgrqVKEz-VEDO9zg&hl=pl&sa=X&ved=2ahUKEwi0iaKG5p7 nAhUlmYsKHRxKDl4Q6AEwBXoECAkQAQ#v=onepage &q=LOEC%20Sulfamethoxazole&f=false
  46. C.Y. Chen, Y.J. Wang, C.F. Yang, Estimating low-toxic-effect concentrations in closed-system algal toxicity tests, Ecotoxicol. Environ. Saf., 72 (2009) 1514–1522.
  47. European Chemicals Agency ECHA, Available at: echa.europa. eu › registration-dossier › registered-dossier
  48. Caffeine. Available at: https://echa-term.echa.europa.eu/fi/web/ guest/registration-dossier/-/registered-dossier/10085/6/2/6
  49. Available at: https://books.google.pl/books?id=N-peXPyJs 4C&pg=PA58&lpg=PA58&dq=Caffeine+NOEC+ fish&source=bl&ots=mekciG8Z2u&sig=ACfU3U3mJa7Zg NyRpTxdQtytwJbIg_UpLg&hl=pl&sa=X&ved=2ahUKE wi_tZqK667nAhXpAhAIHSHBACo4ChDoATAJegQICBAB #v=onepage&q=Caffeine NOEC fish&f=false
  50. Canadian Water Quality Guidelines for the Protection of Aquatic Life, Guidance on the Site-Specific Application of Water Quality Guidelines in Canada: Procedures for Deriving Numerical Water Quality Objectives, Canadian Environmental Quality Guidelines, Canadian Council of Ministers of the Environment, 2003.
  51. PPDB: Pesticide Properties DataBase. Available at: https://sitem. herts.ac.uk/aeru/ppdb/en/Reports/226.htm dieldrin (Ref: ENT 16225).
  52. Material Safety Data Sheet Salicylic acid. Available at: https://fscimage.fishersci.com/msds/20315.htm
  53. A. Murray, J. Traylor, Caffeine Toxicity, StatPearls Publishing LLC. Available at: https://www.ncbi.nlm.nih.gov/books/NBK532910/2020
  54. Caffeine, Safety Data Sheet, Merck. Available at: https:// www.merckmillipore.com/PL/pl/product/Caffeine-CAS-58-08-2-Calbiochem,EMD_BIO-205548
  55. European Chemicals Agency ECHA, Phenanthrene as a Substance of Very High Concern Because of Its Vpvb1 (Article 57e) Properties. Available at: https://echa.europa.eu/documents/10162/abc44d64-7bfe-ee88-d8a6-7ea30a448360
  56. Developing a Set of Reference Chemicals for Use in Biodegradability Tests for Assessing the Persistency of Chemicals. Available at: http://cefic-lri.org/wp-content/uploads/uploads/Project%20publications/MCC_007_Eco12_Final_ Report.pdf
  57. I. Salihu, Y.S. Mohd, A.S. Mohd, A.R. Nor Arina, A.K. Khalilah, K. Ariff, A.A. Siti, Bacteria degradation of caffeine: a review, Asian J. Plant Biol., 2 (2014) 24–33.
  58. Salicylic Acid. Available at: https://echa.europa.eu/registrationdossier/-/ registered-dossier/14544/5/3/2
  59. Environmental Risk Assessment Summary Sulfamethoxazole, F. Hoffmann-La Roche Ltd., Group SHE (LSO), ANH, 2018.
  60. J.M. Anderson, Biodegradation of Polymers in Encyclopaedia of Materials: Science and Technology, 2001. Available at: https://www.sciencedirect.com/topics/physics-and-astronomy/biodegradation
  61. C.P. Gerba, Chapter 14: Risk Assessment, I. Pepper, C. Gerba, M. Brusseau, Eds., Environmental and Pollution Science, eBook, Academic Press, Elsevier, 2011.
  62. Florida Department of Health, Updated Health Advisory Levels Toxicology Values DRAFT pdf.
  63. EPA, Integrated Risk Information System (IRIS), Phenanthrene.
  64. EPA, Integrated Risk Information System (IRIS), Fluoranthene.
  65. Available at: https://cfpub.epa.gov/ncea/iris2/chemicalLanding. cfm?substance_nmbr=225
  66. EQS Datasheet, Environmental Quality standard, Sulfame- thoxazole.
  67. NJDEP, Toxicity Factors for Salycylic Acid.
  68. Available at: https://echa.europa.eu/registration-dossier/-/registered-dossier/14544/7/8
  69. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706294/
  70. Available at: https://www.cancer.org/latest-news/coffee-andcancer-what-the-research-really-shows.html
  71. Available at: https://www.epa.gov/iris
  72. United States Environmental Protection Agency. Available at: https://www.epa.gov/pesticide-science-and-assessing pesticide-risks/technical-overview-ecological-risk-assessmentrisk
  73. Available at: https://www.chemsafetypro.com/Topics/CRA/ How_to_Calculate_Hazard_Quotients_(HQ)_and_Risk_ Quotients_(RQ).html
  74. Cited from Frąk M., Wiśniewska M., Impact of pesticides (fenitrothion, tolylfluanid) on Daphnia magna on the base of chronic toxicity tests file:///C:/Users/U%C5%BCytkownik/Downloads/art19_167.pdf (in Polish)
  75. H. Gupta, Removal of phenanthrene from water using activated carbon developed from orange rind, Int. J. Sci. Res. Environ. Sci., 3 (2015) 248–255.
  76. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC 5990792/#!po=40.6250
  77. Available at: https://www.researchgate.net/publication/281953 674_Removal_of_Phenanthrene_from_Water_Using_Activated_Carbon_Developed_from_Orange_Rind
  78. Available at: https://journals.sagepub.com/doi/full/10.1177/0263 617418756407
  79. Available at: https://www.sciencedirect.com/science/article/pii/ S138358660600325X
  80. Available at: https://iwaponline.com/wst/article-abstract/ doi/10.2166/wst.2020.011/71886/Optimisation-of-the-sorption-of- selected?redirectedFrom=fulltext
  81. Available at: https://open.library.ubc.ca/cIRcle/collections/ ubctheses/24/items/1.0368678
  82. M A. Nkansah, A.A. Christy, T. Barth, G.W. Francis, The use of lightweight expanded clay aggregate (LECA) as sorbent for PAHs removal from water, J. Hazard. Mater., 217–218 (2012) 360–365.
  83. M.S. Hedayati, Removal of PAHs Compounds from Aqueous Solution with Modified Zeolites, The University of British Columbia, 2018.
  84. Available at: https://books.google.pl/books?id=ivLiNH-NjOcC& pg=PA175&lpg=PA175&dq=adsorption+of+fluoranthene+by+ activated+carbon&source=bl&ots=MEz9gUQLeL&sig=ACfU 3U2xQI9O3PcOr4iBRfiePXAUQlGHdA&hl=pl&sa=X&ved=2ah UKEwiA05mN5tTnAhWhlosKHWK2A6s4ChDoATAJeg QIChAB#v=onepage&q=adsorption%20of%20fluoranthene% 20by%20activated%20carbon&f=false
  85. E.R. Bandala, J.A. Octaviano, Removal of aldrin, dieldrin, heptachlor, and heptachlor epoxide using activated carbon and/or Pseudomonas fluorescens free cell cultures, J. Environ. Sci. Health., Part B, 41 (2006) 553–569.
  86. M.P. Ormad, N. Miguel, A. Claver, J.M. Matesanz, J.L. Ovelleiro, Pesticides removal in the process of drinking water production, Chemosphere, 71 (2008) 97–106.
  87. M. Aoudia, A. Al-Sabahi, S. Al-Kindy, M. Al-Sheily, F. Marikar, Micellar Enhanced Ultrafiltration for the Removal of Polycyclic Aromatic Hydrocarbons (PAHs) Mixtures in Underground Contaminated Water in Oman. Available at: https://journals. squ.edu.om/index.php/squjs/article/view/374
  88. Y. Zhang, B. Van der Bruggen, G.X. Chen, L. Braeken, C. Vandecasteele, Removal of pesticides by nanofiltration: effect of the water matrix, Sep. Purif. Technol., 38 (2004) 163–172.
  89. J. Mallavialle, P.E. Odendaal, M.R. Wiesner, Water Treatment Membrane Processes, McGraw-Hill, New York, NY; San Francisco, CA; Washington, DC, 1996.
  90. J.K. Shim, I.S. Park, J.Y. Kim, Use of Amphiphilic Polymer Nanoparticles as a Nano-Absorbent for Enhancing Efficiency of Micelle-enhanced Ultrafiltration Process. Available at: https://www.cheric.org/research/tech/periodicals/view. php?seq=692371
  91. X.D. Wang, H.H. Zhang, L. Wang, X.F. Guo, Study of Effects of Ionic Strength and pH on PAHs Removal. Available at: https://books.google.pl/books?id=0COsCQAAQBAJ&pg=P A89&lpg=PA89&dq=phenanthrene+removal+by+nanofiltr ation&source=bl&ots=59UeKyq6CG&sig=ACfU3U3T0Y7c QcBj8J9yuYh8blT-bOsu_g&hl=pl&sa=X&ved=2ahUKEwi3_ qjq8sXoAhVE_SoKHWyCAxcQ6AEwBHoECAkQAQ#v= onepage&q=phenanthrene%20removal%20by%20 nanofiltration&f=false
  92. L. Zhu, Rejection of organic micropollutants by clean and fouled nanofiltration membranes, J. Chem., 2015 (2015), doi: 10.1155/2015/934318.
  93. M. Smol, M. Włodarczyk-Makuła, K. Mielczarek, J. Bohdziewicz, D. Włóka, The use of reversed osmosis in the removal of PAHs from municipal landfill leachate, Polycyclic Aromat. Compd., 36 (2016) 20–39.
  94. M. Smol, M. Włodarczyk-Makuła, The effectiveness in the removal of PAHs from aqueous solutions in physical and chemical processes: a review, Polycyclic Aromat. Compd., 37 (2017) 292–313.
  95. Available at: https://www.maxwaterflow.com/About-Reverse- Osmosis_c_1438.html
  96. Available at: https://www.epa.gov/pesticide-science-and-asses sing-pesticide-risks/finalization-guidance-incorporation-watertreatment#_ 2_3_d_2
  97. Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 473–474 (2014) 619–641.
  98. Bodzek, Micropollutants Removal from Water Environment by Membrane Processes, L. Dąbrowska, M. Włodarczyk- Makuła, Eds., Micropollutants in Wastewater, Waste and in the Environment, Monograph, Czestochowa University of Technology, Czestochowa, Poland, 2018, pp. 62–81.
  99. K. Miksch, E. Felis, J. Kalka, A. Sochacki, J. Drzymała, Micropollutants in the Environment: Occurrence, Interactions and Elimination, Monograph Publication of Middle Pomeranian Scientific Society of The Environment Protection, Koszalin, 2016 (in Polish).