References

  1. M. Klučáková, R. Kolajová, Dissociation ability of humic acids: spectroscopic determination of pKa and comparison with multi-step mechanism, React. Funct. Polym., 78 (2014) 1–6.
  2. M. Klučáková, Conductometric study of the dissociation behavior of humic and fulvic acids, React. Funct. Polym., 128 (2018) 24–28.
  3. S.Q. Zhang, L. Yuan, W. Li, Z. Lin, Y.T. Li, S.W. Hu, B.Q. Zhao, Characterization of pH-fractionated humic acids derived from Chinese weathered coal, Chemosphere, 166 (2017) 334–342.
  4. K.-L. Chen, L.-C. Liu, W.-R. Chen, Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils, Environ. Pollut., 231 (2017) 1163–1171.
  5. R. Lu, G.-P. Sheng, Y. Liang, W.-H. Li, Z.-H. Tong, W. Chen, H.-Q. Yu, Characterizing the interactions between polycyclic aromatic hydrocarbons and fulvic acids in water, Environ. Sci. Pollut. Res., 20 (2013) 2220–2225.
  6. J. Xu, Y.-Y. Hu, X.-Y. Li, J.-J. Chen, G.-P. Sheng, Rapidly probing the interaction between sulfamethazine antibiotics and fulvic acids, Environ. Pollut., 243 (2018) 752–757.
  7. M. Klučáková, Dissociation properties and behavior of active humic fractions dissolved in aqueous systems, React. Funct. Polym., 109 (2016) 9–14.
  8. F. Lian, B.B. Sun, X. Chen, L.Y. Zhu, Z.Q. Liu, B.S. Xing, Effect of humic acid (HA) on sulfonamide sorption by biochars, Environ. Pollut., 204 (2015) 306–312.
  9. M. Grzegorczuk-Nowacka, A.M. Anielak, Effect of iron and aluminum on adsorption of fulvic acids on Norit ROW 0.8 supra carbon, Environ. Eng. Sci., 34 (2017) 659–665.
  10. J.-C. Lou, C.-J. Chang, W.-H. Chen, W.-B. Tseng, J.-Y. Han, Removal of trihalomethanes and haloacetic acids from treated drinking water by biological activated carbon filter, Water Air Soil Pollut., 225 (2014) 1851–1859.
  11. F.J. Rodríguez, M. García-Valverde, Influence of preozonation on the adsorptivity of humic substances onto activated carbon, Environ. Sci. Pollut. Res., 23 (2016) 21980–21988.
  12. X. Zhong, C.W. Cui, S.L. Yu, The determination and fate of disinfection by-products from ozonation-chlorination of fulvic acid, Environ. Sci. Pollut. Res., 24 (2017) 6472–6480.
  13. M.J. Rodriguez, J.-B. Sérodes, Spatial and temporal evolution of trihalomethanes in three water distribution systems, Water Res., 35 (2001) 1572–1586.
  14. I. Toroz, V. Uyak, Seasonal variations of trihalomethanes (THMs) in water distribution networks of Istanbul City, Desalination, 176 (2005) 127–141.
  15. X. Li, H.-b. Zhao, Development of a model for predicting trihalomethanes propagation in water distribution systems, Chemosphere, 62 (2006) 1026–1032.
  16. B. El-Attafia, M. Soraya, Presence and seasonal variation of trihalomethanes (THMs) levels in drinking tap water in Mostaganem Province in northwest Algeria, Electron Physician, 9 (2017) 4364–4369.
  17. M. Fabbricino, G.V. Korshin, Formation of disinfection by-products and applicability of differential absorbance spectroscopy to monitor halogenation in chlorinated coastal and deep ocean seawater, Desalination, 170 (2005) 57–69.
  18. A. Włodyka-Bergier The effect of UV254 radiation on the formation of halogen organic disinfection by-products in pool water, Seria Rozprawy Monografie 309, Wydawnictwo AGH, Kraków, 309 (2016) 18–114, (in Polish).
  19. A.M. Anielak, M. Grzegorczuk, R. Schmidt, Effect of chloride ions on formation chloroorganic substances during oxidation of fulvic acids, Przem. Chem., 5 (2008) 404–407.
  20. K. Sazawa, H. Yoshida, K. Okusu, N. Hata, H. Kuramitz, Effects of forest fire on the properties of soil and humic substances extracted from forest soil in Gunma, Japan, Environ. Sci. Pollut. Res., 25 (2018) 30325–30338.
  21. T.T. Li, F.H. Song, J. Zhang, S. Liu, B.S. Xing, Y.C. Bai, Pyrolysis characteristics of soil humic substances using TG-FTIR-MS combined with kinetic models, Sci. Total Environ., 698 (2020), https://doi.org/10.1016/j.scitotenv.2019.134237.
  22. X.-S. He, B.-D. Xi, Z.-M. Wei, Y.-H. Jiang, C.-M. Geng, Y. Yang, Y. Yuan, H.-L. Liu, Physicochemical and spectroscopic characteristics of dissolved organic matter extracted from municipal solid waste (MSW) and their influence on the landfill biological stability, Bioresour. Technol., 102 (2011) 2322–2327.
  23. Y. Dang, Y.Q. Lei, Z. Liu, Y.T. Xue, D. Sun, L.-Y. Wang, D. Holmes, Impact of fulvic acids on bio-methanogenic treatment of municipal solid waste incineration leachate, Water Res., 106 (2016) 71–78.
  24. IHSS, International Humic Substance Society, 2014, Available at: http://www.humicsubstances.org/soilhafa.html.
  25. E.M. Thurman, R.L. Malcolm, Preparative isolation of aquatic humic substances, Environ. Sci. Technol., 15 (1981) 463–466.
  26. Y.L. Zhou, Y.B. Zhang, G.H. Li, Y.D. Wu, T. Jiang, A further study on adsorption interaction of humic acid on natural magnetite, hematite and quartz in iron ore pelletizing process: effect of the solution pH value, Powder Technol., 217 (2015) 155–166.
  27. B.R. Araújo, L.P.C. Romão, M.E. Doumer, A.S. Mangrich, Evaluation of the interactions between chitosan and humics in media for the controlled release of nitrogen fertilizer, J. Environ. Manage., 190 (2017) 122–131.
  28. S.L. Huo, B.D. Xi, H.C. Yu, L.S. He, S.L. Fan, H.L. Liu, Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages, J. Environ. Sci., 20 (2008) 492–498.
  29. Q. Zhang, G.Q. Liang, T.F. Guo, P. He, X.B. Wang, W. Zhou, Evident variations of fungal and actinobacterial cellulolytic communities associated with different humified particlesize fractions in a long-term fertilizer experiment, Soil Biol. Biochem., 113 (2017) 1–13.
  30. J. Zhang, J.-L. Gong, G.-M. Zenga, X.-M. Ou, Y. Jiang, Y.-N. Chang, M. Guo, C. Zhang, H.-Y. Liu, Simultaneous removal of humic acid/fulvic acid and lead from landfill leachate using magnetic graphene oxide, Appl. Surf. Sci., 370 (2016) 335–350.
  31. A.M. Anielak, M. Kryłów, D. Łomińska-Płatek, Characterization of fulvic acids contained in municipal sewage purified with activated sludge, Arch. Environ. Prot., 44 (2018) 70–76.
  32. C. Xiaoli, T. Shimaoka, G. Qiang, Z. Youcai, Characterization of humic and fulvic acids extracted from landfill by elemental composition, 13C CP/MAS NMR and TMAH-Py-GC/MS, Waste Manage., 28 (2008) 896–903.
  33. D. Gajdošová, K. Novotná, P. Prošek, J. Havel, Separation and characterization of humic acids from Antarctica by capillary electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry: inclusion complexes of humic acids with cyclodextrins, J. Chromatogr. A, 1014 (2003) 117–127.
  34. H. Li, Y.K. Li, S.X. Zou, C.C. Li, Extracting humic acids from digested sludge by alkaline treatment and ultrafiltration, J. Mater. Cycles Waste Manage., 16 (2014) 93–100.
  35. J. Kuĉerík, P. Bursáková, A. Průšová, L. Grebíková, G.E. Schaumann, Hydration of humic and fulvic acids studied by DSC, J. Therm. Anal. Calorim., 110 (2012) 451–459.
  36. X. Xiao, B.-D. Xi, X.-S. He, H. Zhang, Y.-H. Li, S.Y. Pu, S.-J. Liu, M.-D. Yu, C. Yang, Redox properties and dechlorination capacities of landfill-derived humic-like acids, Environ. Pollut., 253 (2019) 488–496.