References
- M. Klučáková, R. Kolajová, Dissociation ability of humic acids:
spectroscopic determination of pKa and comparison with
multi-step mechanism, React. Funct. Polym., 78 (2014) 1–6.
- M. Klučáková, Conductometric study of the dissociation
behavior of humic and fulvic acids, React. Funct. Polym.,
128 (2018) 24–28.
- S.Q. Zhang, L. Yuan, W. Li, Z. Lin, Y.T. Li, S.W. Hu, B.Q. Zhao,
Characterization of pH-fractionated humic acids derived from
Chinese weathered coal, Chemosphere, 166 (2017) 334–342.
- K.-L. Chen, L.-C. Liu, W.-R. Chen, Adsorption of sulfamethoxazole
and sulfapyridine antibiotics in high organic content
soils, Environ. Pollut., 231 (2017) 1163–1171.
- R. Lu, G.-P. Sheng, Y. Liang, W.-H. Li, Z.-H. Tong, W. Chen,
H.-Q. Yu, Characterizing the interactions between polycyclic
aromatic hydrocarbons and fulvic acids in water, Environ. Sci.
Pollut. Res., 20 (2013) 2220–2225.
- J. Xu, Y.-Y. Hu, X.-Y. Li, J.-J. Chen, G.-P. Sheng, Rapidly probing
the interaction between sulfamethazine antibiotics and fulvic
acids, Environ. Pollut., 243 (2018) 752–757.
- M. Klučáková, Dissociation properties and behavior of active
humic fractions dissolved in aqueous systems, React. Funct.
Polym., 109 (2016) 9–14.
- F. Lian, B.B. Sun, X. Chen, L.Y. Zhu, Z.Q. Liu, B.S. Xing, Effect of
humic acid (HA) on sulfonamide sorption by biochars, Environ.
Pollut., 204 (2015) 306–312.
- M. Grzegorczuk-Nowacka, A.M. Anielak, Effect of iron and
aluminum on adsorption of fulvic acids on Norit ROW 0.8
supra carbon, Environ. Eng. Sci., 34 (2017) 659–665.
- J.-C. Lou, C.-J. Chang, W.-H. Chen, W.-B. Tseng, J.-Y. Han,
Removal of trihalomethanes and haloacetic acids from treated
drinking water by biological activated carbon filter, Water
Air Soil Pollut., 225 (2014) 1851–1859.
- F.J. Rodríguez, M. García-Valverde, Influence of preozonation
on the adsorptivity of humic substances onto activated carbon,
Environ. Sci. Pollut. Res., 23 (2016) 21980–21988.
- X. Zhong, C.W. Cui, S.L. Yu, The determination and fate of
disinfection by-products from ozonation-chlorination of fulvic
acid, Environ. Sci. Pollut. Res., 24 (2017) 6472–6480.
- M.J. Rodriguez, J.-B. Sérodes, Spatial and temporal evolution
of trihalomethanes in three water distribution systems, Water
Res., 35 (2001) 1572–1586.
- I. Toroz, V. Uyak, Seasonal variations of trihalomethanes (THMs)
in water distribution networks of Istanbul City, Desalination,
176 (2005) 127–141.
- X. Li, H.-b. Zhao, Development of a model for predicting
trihalomethanes propagation in water distribution systems,
Chemosphere, 62 (2006) 1026–1032.
- B. El-Attafia, M. Soraya, Presence and seasonal variation
of trihalomethanes (THMs) levels in drinking tap water in
Mostaganem Province in northwest Algeria, Electron Physician,
9 (2017) 4364–4369.
- M. Fabbricino, G.V. Korshin, Formation of disinfection
by-products and applicability of differential absorbance
spectroscopy to monitor halogenation in chlorinated coastal
and deep ocean seawater, Desalination, 170 (2005) 57–69.
- A. Włodyka-Bergier The effect of UV254 radiation on the
formation of halogen organic disinfection by-products in pool
water, Seria Rozprawy Monografie 309, Wydawnictwo AGH,
Kraków, 309 (2016) 18–114, (in Polish).
- A.M. Anielak, M. Grzegorczuk, R. Schmidt, Effect of chloride
ions on formation chloroorganic substances during oxidation of
fulvic acids, Przem. Chem., 5 (2008) 404–407.
- K. Sazawa, H. Yoshida, K. Okusu, N. Hata, H. Kuramitz, Effects
of forest fire on the properties of soil and humic substances
extracted from forest soil in Gunma, Japan, Environ. Sci. Pollut.
Res., 25 (2018) 30325–30338.
- T.T. Li, F.H. Song, J. Zhang, S. Liu, B.S. Xing, Y.C. Bai, Pyrolysis
characteristics of soil humic substances using TG-FTIR-MS
combined with kinetic models, Sci. Total Environ., 698 (2020),
https://doi.org/10.1016/j.scitotenv.2019.134237.
- X.-S. He, B.-D. Xi, Z.-M. Wei, Y.-H. Jiang, C.-M. Geng,
Y. Yang, Y. Yuan, H.-L. Liu, Physicochemical and spectroscopic
characteristics of dissolved organic matter extracted from
municipal solid waste (MSW) and their influence on the landfill
biological stability, Bioresour. Technol., 102 (2011) 2322–2327.
- Y. Dang, Y.Q. Lei, Z. Liu, Y.T. Xue, D. Sun, L.-Y. Wang,
D. Holmes, Impact of fulvic acids on bio-methanogenic
treatment of municipal solid waste incineration leachate, Water
Res., 106 (2016) 71–78.
- IHSS, International Humic Substance Society, 2014, Available
at: http://www.humicsubstances.org/soilhafa.html.
- E.M. Thurman, R.L. Malcolm, Preparative isolation of aquatic
humic substances, Environ. Sci. Technol., 15 (1981) 463–466.
- Y.L. Zhou, Y.B. Zhang, G.H. Li, Y.D. Wu, T. Jiang, A further study
on adsorption interaction of humic acid on natural magnetite,
hematite and quartz in iron ore pelletizing process: effect of the
solution pH value, Powder Technol., 217 (2015) 155–166.
- B.R. Araújo, L.P.C. Romão, M.E. Doumer, A.S. Mangrich,
Evaluation of the interactions between chitosan and humics in
media for the controlled release of nitrogen fertilizer, J. Environ.
Manage., 190 (2017) 122–131.
- S.L. Huo, B.D. Xi, H.C. Yu, L.S. He, S.L. Fan, H.L. Liu,
Characteristics of dissolved organic matter (DOM) in leachate
with different landfill ages, J. Environ. Sci., 20 (2008) 492–498.
- Q. Zhang, G.Q. Liang, T.F. Guo, P. He, X.B. Wang, W. Zhou,
Evident variations of fungal and actinobacterial cellulolytic
communities associated with different humified particlesize
fractions in a long-term fertilizer experiment, Soil Biol.
Biochem., 113 (2017) 1–13.
- J. Zhang, J.-L. Gong, G.-M. Zenga, X.-M. Ou, Y. Jiang,
Y.-N. Chang, M. Guo, C. Zhang, H.-Y. Liu, Simultaneous
removal of humic acid/fulvic acid and lead from landfill
leachate using magnetic graphene oxide, Appl. Surf. Sci.,
370 (2016) 335–350.
- A.M. Anielak, M. Kryłów, D. Łomińska-Płatek, Characterization
of fulvic acids contained in municipal sewage purified
with activated sludge, Arch. Environ. Prot., 44 (2018) 70–76.
- C. Xiaoli, T. Shimaoka, G. Qiang, Z. Youcai, Characterization
of humic and fulvic acids extracted from landfill by elemental
composition, 13C CP/MAS NMR and TMAH-Py-GC/MS,
Waste Manage., 28 (2008) 896–903.
- D. Gajdošová, K. Novotná, P. Prošek, J. Havel, Separation and
characterization of humic acids from Antarctica by capillary
electrophoresis and matrix-assisted laser desorption ionization
time-of-flight mass spectrometry: inclusion complexes of humic
acids with cyclodextrins, J. Chromatogr. A, 1014 (2003) 117–127.
- H. Li, Y.K. Li, S.X. Zou, C.C. Li, Extracting humic acids from
digested sludge by alkaline treatment and ultrafiltration,
J. Mater. Cycles Waste Manage., 16 (2014) 93–100.
- J. Kuĉerík, P. Bursáková, A. Průšová, L. Grebíková,
G.E. Schaumann, Hydration of humic and fulvic acids studied
by DSC, J. Therm. Anal. Calorim., 110 (2012) 451–459.
- X. Xiao, B.-D. Xi, X.-S. He, H. Zhang, Y.-H. Li, S.Y. Pu,
S.-J. Liu, M.-D. Yu, C. Yang, Redox properties and dechlorination
capacities of landfill-derived humic-like acids, Environ. Pollut.,
253 (2019) 488–496.