References

  1. H. Machowska, Coke industry in the aspect of environmental protection, Proc. ECO Pole, 5 (2011) 269–274 (in Polish).
  2. A. Kwarciak-Kozłowska, M. Gałwa-Widera, J. Bień, D. Nowak, The use of TiO2 and ZnO in coke wastewater treatment, Przem. Chem., 97 (2018) 1492–1495 (in Polish).
  3. I.M.S. Pillai, A.K. Gupta, Anodic oxidation of coke oven wastewater: multiparameter optimization for simultaneous removal of cyanide, COD and phenol, J. Environ. Manage., 176 (2016) 45–53.
  4. K. Mielczarek, A. Kwarciak-Kozłowska, J. Bohdziewicz, Coke wastewater treatment in an integrated system combining the coagulation process with pressure membrane techniques, Annu. Set Environ. Prot., 13 (2011) 1965–1984 (in Polish).
  5. Cz. Olczak, G. Ligus, J.M. Miodoński, Modern methods of phenolic coke wastewater treatment, Chemik, 67 (2013) 979–984.
  6. P. Pal, R. Kumar, Treatment of coke wastewater: a critical review for developing sustainable management strategies, Sep. Purif. Rev., 43 (2014) 89–123.
  7. M. Smol, D. Włóka, M. Włodarczyk-Makuła, Influence of integrated membrane treatment on the phytotoxicity of wastewater from the coke industry, Water Air Soil Pollut., 229 (2018) 154.
  8. X. Zhoua, Z. Houa, J. Songa, L. Lva, Spectrum evolution of dissolved aromatic organic matters (DAOMs) during electroperoxi- coagulation pretreatment of coking wastewater, Sep. Purif. Technol., 235 (2020) 116–125.
  9. J. Wang, Y. Ji, F. Zhang, D. Wang, X. He, Ch. Wang, Treatment of coking wastewater using oxic-anoxic-oxic process followed by coagulation and ozonation, Carbon Resour. Convers., 2 (2019) 151–156.
  10. J. Kozak, M. Włodarczyk-Makuła, Degradation of low molecular weight PAHs in the modified process of Fenton, Annu. Set Environ. Prot., 20 (2018) 1418–1429 (in Polish).
  11. A.J. Forsgren, Occurrence and Fate Polycystic Aromatic Hydrocarbons (PAHs), Taylor & Francis, Boca Raton, 2015.
  12. H.I. Abdel-Shafy, M.S. Mansour, A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation, Egypt. J. Pet., 25 (2016) 107–123.
  13. M. Tomaszewski, K. Pypeć, A. Zgórska, A. Ziembińska- Buczyńska, Toxicity analysis of coke wastewater treated in a rotating biological contactor and a membrane bioreactor, Environ. Biotechnol., 11 (2015) 34–40.
  14. S. Karthikeyan, A. Titus, A. Gnanamani, A.B. Mandal, G. Sekaran, Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes, Desalination, 281 (2011) 438–445.
  15. N. Dulova, M. Trapido, Application of Fenton’s reaction for food-processing wastewater treatment, J. Adv. Oxid. Technol., 14 (2011) 9–16.
  16. Y. Deng, J.D. Englehardt, Treatment of landfill leachate by Fenton process, Water Res., 40 (2006) 3683–3694.
  17. A.D. Patil, P.D. Raut, Treatment of textile wastewater by Fenton’s process as advanced oxidation process, IOSR J. Environ. Sci. Toxicol. Food Technol., 8 (2014) 29–32.
  18. A. Kwarciak-Kozłowska, A. Krzywicka, M. Gałwa-Widera, Fenton process supported with ultrasonic field in coke wastewater treatment, Przem. Chem., 94 (2015) 1527–1529 (in Polish).
  19. K. Barbusiński, Fenton reaction-controversy concerning the chemistry, Ecol. Chem. Eng. S, 16 (2009) 347–358.
  20. J. Długosz, Fenton method and its modifications in the treatment leachate - for review, Arch. Waste Manage. Environ. Prot., 16 (2014) 33–42 (in Polish).
  21. E.E. Ebrahiem, M.N. Al-Maghrabi, A.R. Mobarki, Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology, Arabian J. Chem., 10 (2017) 1674–1679.
  22. K. Barbusiński, Advanced Oxidation in the Treatment Processes of Selected Industrial Wastewater, Wydawnictwo Politechniki Śląskiej, Gliwice, 2013, ISBN 978–83–7880–101–6 (in Polish).
  23. N.W. Ingole, S.V. Khedkar, The ultrasound reactor technology-a technology for future, Int. J. Adv. Eng. Res. Stud., 2 (2012) 72–75.
  24. A. Kwarciak-Kozłowska, A. Krzywicka, Effect of ultrasonic field to increase the biodegradability of coke processing wastewater, Water Sci. Technol., 17 (2015) 133–142 (in Polish).
  25. A. Krzywicka, A. Kwarciak-Kozłowska, Advanced oxidation processes with coke plant wastewater treatment, Water Sci. Technol., 69 (2014) 1875–1878.
  26. S.G. Schrank, H.J. José, R.F.P.M. Moreira, H.Fr. Schröder, Applicability of Fenton and H2O2/UV reactions in the treatment of tannery wastewaters, Chemosphere, 60 (2005) 644–655.
  27. A.A. Omar, M.M. Ramli, P.N.F.M. Khamaruddin, Fenton oxidation of natural gas plant wastewater, Can. J. Chem. Eng. Technol., 1 (2010) 1–15.
  28. P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination, 299 (2012) 1–15.
  29. F. Lücking, H. Köser, M. Jank, A. Ritter, Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution, Water Res., 32 (1998) 2607–2614.
  30. W. Li, Q. Zhou, T. Hua, Removal of organic matter from landfill leachate by advanced oxidation processes: a review, Int. J. Chem. Eng., 2010 (2010) 1–10.
  31. K. Barbusinski, Sodium percarbonate as a reagent for effective industrial wastewater treatment, Przem. Chem., 87 (2008) 33–37 (in Polish).
  32. J. Kozak, M. Włodarczyk-Makuła, The use of sodium percarbonate in the Fenton reaction for the PAHS oxidation, Civ. Environ. Eng. Rep., 28 (2018) 124–139.
  33. Y. Yuan, B. Lai, Y.-Y. Tang, Combined Fe0/air and Fenton process for the treatment of dinitrodiazophenol (DDNP) industry wastewater, Chem. Eng. J., 283 (2016) 1514–1521.
  34. Y. Ren, Y. Yuan, B. Lai, Y. Zhou, J. Wang, Treatment of reverse osmosis (RO) concentrate by the combined Fe/Cu/air and Fenton process (1st Fe/Cu/air-Fenton-2nd Fe/Cu/air), J. Hazard. Mater., 302 (2016) 36–44.
  35. M.-H. Zhang, H. Dong, L. Zhao, D.-X. Wang, D. Meng, A review on Fenton process for organic wastewater treatment based on optimization perspective, Sci. Total Environ., 670 (2019) 110–121.
  36. N. Dulova, M. Trapido, A. Dulov, Catalytic degradation of picric acid by heterogeneous Fenton‐based processes, Environ. Technol., 32 (2011) 439–446.
  37. I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow: a review, Environ. Sci. Pollut. Res., 21 (2014) 8336–8367.
  38. Z. Miao, X. Gu, S. Lu, D.D. Dionysiou, S.R. Al-Abed, X. Zang, X. Wu, Z.Qiu, Q. Sui, M. Danish, Mechanism of PCE oxidation by percarbonate in a chelated Fe(II)-based catalyzed system, Chem. Eng. J., 275 (2015) 53–62.
  39. Ch. Tan, Q. Xu, H. Zhang, Z. Liu, S. Ren, H. Li, Enhanced removal of coumarin by a novel O3/SPC system: kinetic and mechanism, Chemosphere, 219 (2019) 100–108.
  40. B. Pieczykolan, I. Płonka, K. Barbusiński, Discoloration of dye wastewater by modified UV-Fenton process with sodium percarbonate, Arch. Civ. Eng. Environ., 4 (2016) 135–140.
  41. G. Chen, G.E. Hoag, P. Chedda, F. Nadim, B.A. Woody, G.M. Dobbs, The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton’s reagent, J. Hazard. Mater., 87 (2001) 171–186.
  42. A. Kwarciak-Kozłowska, R. Włodarczyk, K. Wystalska, Biochar compared with activated granular carbon for landfill leachate treatment, E3S Web Conf., 100 (2019) 00042.
  43. R. Włodarczyk, A. Kwarciak-Kozłowska, Analysis of sorption possibilities of anthropogenic silver nanoparticles using biochar, Przem. Chem., 98 (2019) 113–116.
  44. K.R. Reddy, F. Asce, T. Xie, S. Dastgheibi, Evaluation of biochar as a potential filter media for the removal of mixed contaminants from urban storm water runoff, J. Environ. Eng., 140 (2014) 04014043.
  45. D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman Jr., Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review, Bioresour. Technol., 160 (2014) 191–202.
  46. S.E. Hale, J. Lehmann, D. Rutherford, A.R. Zimmerman, R.T. Bachmann, V. Shitumbanuma, A. O’Toole, K.L. Sundqvist, H.P.H. Arp, G. Cornelissen, Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars, Environ. Sci. Technol., 46 (2012) 2830–2838.
  47. D. Mohan, R. Sharma, V.K. Singh, P. Steele, C.U. Pittman, Jr., Fluoride removal from water using bio-char, a green waste, low-cost adsorbent: equilibrium uptake and sorption dynamics modeling, Ind. Eng. Chem. Res., 51 (2012) 900–914.
  48. M. Bernd, W. Steffen, A. Karsten, M. Lubken, EGU general assembly, potential dual use of biochar for wastewater treatment and soil amelioration, Geophys. Res. Abstr., 15 (EGU2013– 11260) 2013.
  49. A. Kwarciak-Kozłowska, M. Madeła, M. Wrońska, Posttreatment of coke wastewater on activated carbons, E3S Web Conf., 44 (2018) 00088.
  50. I. Walter, R. Martínez, V. Cala, Heavy metal speciation and phytotoxic effect of three sewage sludges for agricultural uses, Environ. Pollut., 139 (2006) 507–514.
  51. A. Kwarciak-Kozłowska, A. Krzywicka, Toxicity of coke wastewater treated with advanced oxidation by Fenton process supported by ultrasonic field, Environ. Prot. Nat. Res., 27 (2016) 42–47.
  52. M. Janiga, M. Michniewicz, The use of hydrogen peroxide in the pre-treatment of process waters and waste water from paper production, Przegl Papier, 69 (2013) 43–49 (in Polish).
  53. S.K. Singh, W.Z. Tang, Fenton treatment of landfill leachate under different COD loading factors, Waste Manage., 33 (2013) 2116–2122.
  54. C.S. Rodrigues, L.M. Madeira, R.A. Boaventura, Optimization of the azo dye Procion Red H-EXL degradation by Fenton’s reagent using experimental design, J. Hazard. Mater., 164 (2009) 987–994.
  55. M.D. Rabelo, C.R. Bellato, C.M. Silva, R.B. Ruy, C.A.B. da Silva, W.G. Nunes, Application of photo-Fenton process for the treatment of kraft pulp mill effluent, Adv. Chem. Eng. Sci., 4 (2014) 483–490.
  56. P. Sindera, E. Felis, J. Wiszniowski, Genotoxicity assessment of coke wastewater, Sci. Rev. Eng. Environ. Sci., 53 (2011) 217–225 (in Polish).
  57. D. Adamcová, M.D. Vaverková, E. Břoušková, The toxicity of two types of sewage sludge from wastewater treatment plant for plants, J. Ecol. Eng., 17 (2016) 33–37.