References
- H. Machowska, Coke industry in the aspect of environmental
protection, Proc. ECO Pole, 5 (2011) 269–274 (in Polish).
- A. Kwarciak-Kozłowska, M. Gałwa-Widera, J. Bień, D. Nowak,
The use of TiO2 and ZnO in coke wastewater treatment, Przem.
Chem., 97 (2018) 1492–1495 (in Polish).
- I.M.S. Pillai, A.K. Gupta, Anodic oxidation of coke oven
wastewater: multiparameter optimization for simultaneous
removal of cyanide, COD and phenol, J. Environ. Manage.,
176 (2016) 45–53.
- K. Mielczarek, A. Kwarciak-Kozłowska, J. Bohdziewicz, Coke
wastewater treatment in an integrated system combining the
coagulation process with pressure membrane techniques,
Annu. Set Environ. Prot., 13 (2011) 1965–1984 (in Polish).
- Cz. Olczak, G. Ligus, J.M. Miodoński, Modern methods of
phenolic coke wastewater treatment, Chemik, 67 (2013) 979–984.
- P. Pal, R. Kumar, Treatment of coke wastewater: a critical review
for developing sustainable management strategies, Sep. Purif.
Rev., 43 (2014) 89–123.
- M. Smol, D. Włóka, M. Włodarczyk-Makuła, Influence of integrated
membrane treatment on the phytotoxicity of wastewater
from the coke industry, Water Air Soil Pollut., 229 (2018) 154.
- X. Zhoua, Z. Houa, J. Songa, L. Lva, Spectrum evolution of
dissolved aromatic organic matters (DAOMs) during electroperoxi-
coagulation pretreatment of coking wastewater, Sep.
Purif. Technol., 235 (2020) 116–125.
- J. Wang, Y. Ji, F. Zhang, D. Wang, X. He, Ch. Wang, Treatment of
coking wastewater using oxic-anoxic-oxic process followed by
coagulation and ozonation, Carbon Resour. Convers., 2 (2019)
151–156.
- J. Kozak, M. Włodarczyk-Makuła, Degradation of low
molecular weight PAHs in the modified process of Fenton,
Annu. Set Environ. Prot., 20 (2018) 1418–1429 (in Polish).
- A.J. Forsgren, Occurrence and Fate Polycystic Aromatic
Hydrocarbons (PAHs), Taylor & Francis, Boca Raton, 2015.
- H.I. Abdel-Shafy, M.S. Mansour, A review on polycyclic
aromatic hydrocarbons: source, environmental impact, effect
on human health and remediation, Egypt. J. Pet., 25 (2016)
107–123.
- M. Tomaszewski, K. Pypeć, A. Zgórska, A. Ziembińska-
Buczyńska, Toxicity analysis of coke wastewater treated in
a rotating biological contactor and a membrane bioreactor,
Environ. Biotechnol., 11 (2015) 34–40.
- S. Karthikeyan, A. Titus, A. Gnanamani, A.B. Mandal,
G. Sekaran, Treatment of textile wastewater by homogeneous
and heterogeneous Fenton oxidation processes, Desalination,
281 (2011) 438–445.
- N. Dulova, M. Trapido, Application of Fenton’s reaction for
food-processing wastewater treatment, J. Adv. Oxid. Technol.,
14 (2011) 9–16.
- Y. Deng, J.D. Englehardt, Treatment of landfill leachate by
Fenton process, Water Res., 40 (2006) 3683–3694.
- A.D. Patil, P.D. Raut, Treatment of textile wastewater by Fenton’s
process as advanced oxidation process, IOSR J. Environ. Sci.
Toxicol. Food Technol., 8 (2014) 29–32.
- A. Kwarciak-Kozłowska, A. Krzywicka, M. Gałwa-Widera,
Fenton process supported with ultrasonic field in coke
wastewater treatment, Przem. Chem., 94 (2015) 1527–1529
(in Polish).
- K. Barbusiński, Fenton reaction-controversy concerning the
chemistry, Ecol. Chem. Eng. S, 16 (2009) 347–358.
- J. Długosz, Fenton method and its modifications in the
treatment leachate - for review, Arch. Waste Manage. Environ.
Prot., 16 (2014) 33–42 (in Polish).
- E.E. Ebrahiem, M.N. Al-Maghrabi, A.R. Mobarki, Removal of
organic pollutants from industrial wastewater by applying
photo-Fenton oxidation technology, Arabian J. Chem., 10 (2017)
1674–1679.
- K. Barbusiński, Advanced Oxidation in the Treatment
Processes of Selected Industrial Wastewater, Wydawnictwo
Politechniki Śląskiej, Gliwice, 2013, ISBN 978–83–7880–101–6
(in Polish).
- N.W. Ingole, S.V. Khedkar, The ultrasound reactor technology-a
technology for future, Int. J. Adv. Eng. Res. Stud., 2 (2012)
72–75.
- A. Kwarciak-Kozłowska, A. Krzywicka, Effect of ultrasonic
field to increase the biodegradability of coke processing
wastewater, Water Sci. Technol., 17 (2015) 133–142 (in Polish).
- A. Krzywicka, A. Kwarciak-Kozłowska, Advanced oxidation
processes with coke plant wastewater treatment, Water Sci.
Technol., 69 (2014) 1875–1878.
- S.G. Schrank, H.J. José, R.F.P.M. Moreira, H.Fr. Schröder,
Applicability of Fenton and H2O2/UV reactions in the treatment
of tannery wastewaters, Chemosphere, 60 (2005) 644–655.
- A.A. Omar, M.M. Ramli, P.N.F.M. Khamaruddin, Fenton
oxidation of natural gas plant wastewater, Can. J. Chem. Eng.
Technol., 1 (2010) 1–15.
- P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton
process for water and wastewater treatment: an overview,
Desalination, 299 (2012) 1–15.
- F. Lücking, H. Köser, M. Jank, A. Ritter, Iron powder,
graphite and activated carbon as catalysts for the oxidation of
4-chlorophenol with hydrogen peroxide in aqueous solution,
Water Res., 32 (1998) 2607–2614.
- W. Li, Q. Zhou, T. Hua, Removal of organic matter from landfill
leachate by advanced oxidation processes: a review, Int. J.
Chem. Eng., 2010 (2010) 1–10.
- K. Barbusinski, Sodium percarbonate as a reagent for effective
industrial wastewater treatment, Przem. Chem., 87 (2008) 33–37
(in Polish).
- J. Kozak, M. Włodarczyk-Makuła, The use of sodium
percarbonate in the Fenton reaction for the PAHS oxidation,
Civ. Environ. Eng. Rep., 28 (2018) 124–139.
- Y. Yuan, B. Lai, Y.-Y. Tang, Combined Fe0/air and Fenton process
for the treatment of dinitrodiazophenol (DDNP) industry
wastewater, Chem. Eng. J., 283 (2016) 1514–1521.
- Y. Ren, Y. Yuan, B. Lai, Y. Zhou, J. Wang, Treatment of reverse
osmosis (RO) concentrate by the combined Fe/Cu/air and
Fenton process (1st Fe/Cu/air-Fenton-2nd Fe/Cu/air), J. Hazard.
Mater., 302 (2016) 36–44.
- M.-H. Zhang, H. Dong, L. Zhao, D.-X. Wang, D. Meng, A review
on Fenton process for organic wastewater treatment based
on optimization perspective, Sci. Total Environ., 670 (2019)
110–121.
- N. Dulova, M. Trapido, A. Dulov, Catalytic degradation of
picric acid by heterogeneous Fenton‐based processes, Environ.
Technol., 32 (2011) 439–446.
- I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza,
Electrochemical advanced oxidation processes: today and
tomorrow: a review, Environ. Sci. Pollut. Res., 21 (2014)
8336–8367.
- Z. Miao, X. Gu, S. Lu, D.D. Dionysiou, S.R. Al-Abed, X. Zang,
X. Wu, Z.Qiu, Q. Sui, M. Danish, Mechanism of PCE oxidation
by percarbonate in a chelated Fe(II)-based catalyzed system,
Chem. Eng. J., 275 (2015) 53–62.
- Ch. Tan, Q. Xu, H. Zhang, Z. Liu, S. Ren, H. Li, Enhanced
removal of coumarin by a novel O3/SPC system: kinetic and
mechanism, Chemosphere, 219 (2019) 100–108.
- B. Pieczykolan, I. Płonka, K. Barbusiński, Discoloration of
dye wastewater by modified UV-Fenton process with sodium
percarbonate, Arch. Civ. Eng. Environ., 4 (2016) 135–140.
- G. Chen, G.E. Hoag, P. Chedda, F. Nadim, B.A. Woody,
G.M. Dobbs, The mechanism and applicability of in situ
oxidation of trichloroethylene with Fenton’s reagent, J. Hazard.
Mater., 87 (2001) 171–186.
- A. Kwarciak-Kozłowska, R. Włodarczyk, K. Wystalska, Biochar
compared with activated granular carbon for landfill leachate
treatment, E3S Web Conf., 100 (2019) 00042.
- R. Włodarczyk, A. Kwarciak-Kozłowska, Analysis of sorption
possibilities of anthropogenic silver nanoparticles using
biochar, Przem. Chem., 98 (2019) 113–116.
- K.R. Reddy, F. Asce, T. Xie, S. Dastgheibi, Evaluation of
biochar as a potential filter media for the removal of mixed
contaminants from urban storm water runoff, J. Environ. Eng.,
140 (2014) 04014043.
- D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman Jr., Organic and
inorganic contaminants removal from water with biochar, a
renewable, low cost and sustainable adsorbent-a critical review,
Bioresour. Technol., 160 (2014) 191–202.
- S.E. Hale, J. Lehmann, D. Rutherford, A.R. Zimmerman,
R.T. Bachmann, V. Shitumbanuma, A. O’Toole, K.L. Sundqvist,
H.P.H. Arp, G. Cornelissen, Quantifying the total and
bioavailable polycyclic aromatic hydrocarbons and dioxins in
biochars, Environ. Sci. Technol., 46 (2012) 2830–2838.
- D. Mohan, R. Sharma, V.K. Singh, P. Steele, C.U. Pittman, Jr.,
Fluoride removal from water using bio-char, a green waste,
low-cost adsorbent: equilibrium uptake and sorption dynamics
modeling, Ind. Eng. Chem. Res., 51 (2012) 900–914.
- M. Bernd, W. Steffen, A. Karsten, M. Lubken, EGU general
assembly, potential dual use of biochar for wastewater treatment
and soil amelioration, Geophys. Res. Abstr., 15 (EGU2013–
11260) 2013.
- A. Kwarciak-Kozłowska, M. Madeła, M. Wrońska, Posttreatment
of coke wastewater on activated carbons, E3S Web
Conf., 44 (2018) 00088.
- I. Walter, R. Martínez, V. Cala, Heavy metal speciation and
phytotoxic effect of three sewage sludges for agricultural uses,
Environ. Pollut., 139 (2006) 507–514.
- A. Kwarciak-Kozłowska, A. Krzywicka, Toxicity of coke
wastewater treated with advanced oxidation by Fenton process
supported by ultrasonic field, Environ. Prot. Nat. Res., 27 (2016)
42–47.
- M. Janiga, M. Michniewicz, The use of hydrogen peroxide in
the pre-treatment of process waters and waste water from paper
production, Przegl Papier, 69 (2013) 43–49 (in Polish).
- S.K. Singh, W.Z. Tang, Fenton treatment of landfill leachate
under different COD loading factors, Waste Manage., 33 (2013)
2116–2122.
- C.S. Rodrigues, L.M. Madeira, R.A. Boaventura, Optimization
of the azo dye Procion Red H-EXL degradation by Fenton’s
reagent using experimental design, J. Hazard. Mater., 164 (2009)
987–994.
- M.D. Rabelo, C.R. Bellato, C.M. Silva, R.B. Ruy, C.A.B. da
Silva, W.G. Nunes, Application of photo-Fenton process for
the treatment of kraft pulp mill effluent, Adv. Chem. Eng. Sci.,
4 (2014) 483–490.
- P. Sindera, E. Felis, J. Wiszniowski, Genotoxicity assessment of
coke wastewater, Sci. Rev. Eng. Environ. Sci., 53 (2011) 217–225
(in Polish).
- D. Adamcová, M.D. Vaverková, E. Břoušková, The toxicity of
two types of sewage sludge from wastewater treatment plant
for plants, J. Ecol. Eng., 17 (2016) 33–37.