References

  1. P. Verlicchi, E. Zambello, Pharmaceuticals and personal care products in untreated and treated sewage sludge: occurrence and environmental risk in the case of application on soil—a critical review, Sci. Total Environ., 538 (2015) 750–767.
  2. M. Al Aukidy, P. Verlicchi, A. Jelic, M. Petrovic, D. Barcelò, Monitoring release of pharmaceutical compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy, Sci. Total Environ., 438 (2012) 15–25.
  3. X. Yi, N.H. Tran, T. Yin, Y. He, K.Y.-H. Gin, Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system, Water Res., 121 (2017) 46–60.
  4. O.M. Rodriguez-Narvaez, J.M. Peralta-Hernandez, A. Goonetilleke, E.R. Bandala, Treatment technologies for emerging contaminants in water: a review, Chem. Eng. Sci., 323 (2017) 361–380.
  5. N.H. Tran, M. Reinhard, K.Y.-H. Gin, Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review, Water Res., 133 (2018) 182–207.
  6. J.L. Wilkinson, P.S. Hooda, J. Barker, S. Barton, J. Swinden, Ecotoxic pharmaceuticals, personal care products, and other emerging contaminants: a review of environmental, receptormediated, developmental, and epigenetic toxicity with discussion of proposed toxicity to humans, Crit. Rev. Environ. Sci. Technol., 46 (2016) 336–381.
  7. F.D.L. Leusch, C. De Jager, Y. Levi, R. Lim, L. Puijker, F. Sacher, L.A. Tremblay, V.S. Wilson, H.F. Chapman, Comparison of five in vitro bioassays to measure estrogenic activity in environmental waters, Environ. Sci. Technol., 44 (2010) 3853–3860.
  8. M.S. Souza, P. Hallgren, E. Balseiro, L.-A. Hansson, Low concentrations, potential ecological consequences: synthetic estrogens alter life-history and demographic structures of aquatic invertebrates, Environ. Pollut., 178 (2013) 237–243.
  9. E.E. Commission, Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy, Off. J. Eur. Union, 226 (2013) 1–7.
  10. E.U. Decision, 495/2015, Commission Implementing Decision (EU) 2015/495 of 20 March 2015 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council, Off. J. Eur. Union, 78 (2015) 40–42.
  11. W.F. Directive, Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy, Off. J. Eur. Commun., 22 (2000) 2000.
  12. S. Könemann, R. Kase, E. Simon, K. Swart, S. Buchinger, M. Schlüsener, H. Hollert, B.I. Escher, I. Werner, S. Ait-Aissa, Effect-based and chemical analytical methods to monitor estrogens under the European Water Framework Directive, TrAC, Trends Anal. Chem. 102 (2018) 225–235.
  13. B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring, Water Res., 72 (2015) 3–27.
  14. B. Kasprzyk-Hordern, Pharmacologically active compounds in the environment and their chirality, Chem. Soc. Rev., 39 (2010) 4466–4503.
  15. J.A. Becker, A.I. Stefanakis, Pharmaceuticals and Personal Care Products as Emerging Water Contaminants, Information Reso Management Association, Ed., Pharmaceutical Sciences: Breakthroughs in Research and Practice, IGI Global, 2017, pp. 1457–1475.
  16. J.H. Miller, J.T. Novak, W.R. Knocke, A. Pruden, Survival of antibiotic resistant bacteria and horizontal gene transfer control antibiotic resistance gene content in anaerobic digesters, Front. Microbiol., 7 (2016) 263.
  17. T. Zhang, X.-X. Zhang, L. Ye, Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge, PLoS One., 6 (2011) 1–7, doi: 10.1371/journal.pone.0026041.
  18. K. Kümmerer, Antibiotics in the aquatic environment–a review– part I, Chemosphere, 75 (2009) 417–434.
  19. A.J. Watkinson, E.J. Murby, S.D. Costanzo, Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling, Water Res., 41 (2007) 4164–4176.
  20. Y. Yang, W. Song, H. Lin, W. Wang, L. Du, W. Xing, Antibiotics and antibiotic resistance genes in global lakes: a review and meta-analysis, Environ. Int., 116 (2018) 60–73.
  21. C. Miege, J.M. Choubert, L. Ribeiro, M. Eusèbe, M. Coquery, Fate of pharmaceuticals and personal care products in wastewater treatment plants–conception of a database and first results, Environ. Pollut., 157 (2009) 1721–1726.
  22. I.T. Carvalho, L. Santos, Antibiotics in the aquatic environments: a review of the European scenario, Environ. Int., 94 (2016) 736–757.
  23. N.H. Tran, H. Chen, M. Reinhard, F. Mao, K.Y.-H. Gin, Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes, Water Res., 104 (2016) 461–472.
  24. L.A. Pratt, D.J. Brody, Q. Gu, Antidepressant use in persons aged 12 and over: United States, 2005–2008, NCHS Data Brief, 7 (2011) 1–8.
  25. O. Golovko, V. Kumar, G. Fedorova, T. Randak, R. Grabic, Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant, Chemosphere, 111 (2014) 418–426.
  26. K. Grabicova, R.H. Lindberg, M. Östman, R. Grabic, T. Randak, D.G.J. Larsson, J. Fick, Tissue-specific bioconcentration of antidepressants in fish exposed to effluent from a municipal sewage treatment plant, Sci. Total Environ., 488 (2014) 46–50.
  27. Y. Zhao, G. Yu, S. Chen, S. Zhang, B. Wang, J. Huang, S. Deng, Y. Wang, Ozonation of antidepressant fluoxetine and its metabolite product norfluoxetine: kinetics, intermediates and toxicity, Chem. Eng. Sci., 316 (2017) 951–963.
  28. L.J.G. Silva, A.M.P.T. Pereira, L.M. Meisel, C.M. Lino, A. Pena, Reviewing the serotonin reuptake inhibitors (SSRIs) footprint in the aquatic biota: uptake, bioaccumulation and ecotoxicology, Environ. Pollut., 197 (2015) 127–143.
  29. B. Subedi, K. Balakrishna, R.K. Sinha, N. Yamashita, V.G. Balasubramanian, K. Kannan, Mass loading and removal of pharmaceuticals and personal care products, including psychoactive and illicit drugs and artificial sweeteners, in five sewage treatment plants in India, J. Environ. Chem. Eng., 3 (2015) 2882–2891.
  30. N.H. Tran, J. Gan, V.T. Nguyen, H. Chen, L. You, A. Duarah, L. Zhang, K.Y.-H. Gin, Sorption and biodegradation of artificial sweeteners in activated sludge processes, Bioresour. Technol., 197 (2015) 329–338.
  31. Y. Watanabe, L.T. Bach, P. Van Dinh, M. Prudente, S. Aguja, N. Phay, H. Nakata, Ubiquitous detection of artificial sweeteners and iodinated X-ray contrast media in aquatic environmental and wastewater treatment plant samples from Vietnam, the Philippines, and Myanmar, Arch. Environ. Contam. Toxicol., 70 (2016) 671–681.
  32. D. Fabbri, P. Calza, D. Dalmasso, P. Chiarelli, V. Santoro, C. Medana, Iodinated X-ray contrast agents: photoinduced transformation and monitoring in surface water, Sci. Total Environ., 572 (2016) 340–351.
  33. M. Redeker, A. Wick, B. Meermann, T.A. Ternes, Anaerobic transformation of the iodinated X-ray contrast medium iopromide, its aerobic transformation products, and transfer to further iodinated X-ray contrast media, Environ. Sci. Technol., 52 (2018) 8309–8320.
  34. F.F. Sodré, J.S. Santana, T.R. Sampaio, C. Brandão, Seasonal and spatial distribution of caffeine, atrazine, atenolol and DEET in surface and drinking waters from the Brazilian Federal District, J. Braz. Chem. Soc., 29 (2018) 1854–1865.
  35. Z. Visanji, S.M.K. Sadr, M.B. Johns, D. Savic, F.A. Memon, Optimising wastewater treatment solutions for the removal of contaminants of emerging concern (CECs): a case study for application in India, J. Hydroinform., 22 (2020) 93–110.
  36. R. Kumar, A.K. Sarmah, L.P. Padhye, Fate of pharmaceuticals and personal care products in a wastewater treatment plant with parallel secondary wastewater treatment train, J. Environ. Manage., 233 (2019) 649–659.
  37. J. Drelich, E. Chibowski, D.D. Meng, K. Terpilowski, Hydrophilic and superhydrophilic surfaces and materials, Soft Matter, 7 (2011) 9804–9828.
  38. L. Li, M. Stoiber, A. Wimmer, Z. Xu, C. Lindenblatt, B. Helmreich, M. Schuster, To what extent can full-scale wastewater treatment plant effluent influence the occurrence of silver-based nanoparticles in surface waters?, Environ. Sci. Technol., 50 (2016) 6327–6333.
  39. N.-Q. Puay, G. Qiu, Y.-P. Ting, Effect of zinc oxide nanoparticles on biological wastewater treatment in a sequencing batch reactor, J. Cleaner Prod., 88 (2015) 139–145.
  40. X. Shi, Z. Li, W. Chen, L. Qiang, J. Xia, M. Chen, L. Zhu, P.J.J. Alvarez, Fate of TiO2 nanoparticles entering sewage treatment plants and bioaccumulation in fish in the receiving streams, NanoImpact, 3 (2016) 96–103.
  41. P. Westerhoff, G. Song, K. Hristovski, M.A. Kiser, Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials, J. Environ. Monit., 13 (2011) 1195–1203.
  42. F. Gottschalk, T. Sonderer, R.W. Scholz, B. Nowack, Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions, Environ. Sci. Technol., 43 (2009) 9216–9222.
  43. Y. Xing, Y. Yu, Y. Men, Emerging investigators series: occurrence and fate of emerging organic contaminants in wastewater treatment plants with an enhanced nitrification step, Environ. Sci. Water Res. Technol., 4 (2018) 1412–1426.
  44. Y. Wang, P. Westerhoff, K.D. Hristovski, Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes, J. Hazard. Mater., 201 (2012) 16–22.
  45. S.K. Selahle, P.N. Nomngongo, Quantification of TiO2 and ZnO nanoparticles in wastewater using inductively coupled plasma optical emission spectrometry, Toxicol. Environ. Chem., 101 (2019) 204–214.
  46. H.W. Leung, T.B. Minh, M.B. Murphy, J.C.W. Lam, M.K. So, M. Martin, P.K.S. Lam, B.J. Richardson, Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China, Environ. Int., 42 (2012) 1–9.
  47. E. Archer, B. Petrie, B. Kasprzyk-Hordern, G.M. Wolfaardt, The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters, Chemosphere, 174 (2017) 437–446.
  48. F.S. Freyria, F. Geobaldo, B. Bonelli, Nanomaterials for the abatement of pharmaceuticals and personal care products from wastewater, Appl. Sci., 8 (2018) 1–16, doi:10.3390/app8020170.
  49. I.A. Vasiliadou, R. Molina, F. Martínez, J.A. Melero, Biological removal of pharmaceutical and personal care products by a mixed microbial culture: sorption, desorption and biodegradation, BioChem. Eng. Sci., 81 (2013) 108–119.
  50. S.J. Varjani, M.C. Sudha, Treatment Technologies for Emerging Organic Contaminants Removal from Wastewater, S. Bhattacharya, A. Gupta, A. Gupta, A. Pandey, Eds., Water Remediation, Energy, Environment, and Sustainability, Springer, Singapore, 2018, pp. 91–115.
  51. C. Fan, S.-C. Wang, Co-metabolic enhancement of organic removal from waste water in the presence of high levels of alkyl paraben constituents of cosmetic and personal care products, Chemosphere, 179 (2017) 306–315.
  52. A.L.P. Guardado, Enzymatic Degradation of Recalcitrant Pharmaceutical Micropollutants, Université Montpellier, 2019.
  53. T. Rasheed, M. Bilal, F. Nabeel, M. Adeel, H.M.N. Iqbal, Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment, Environ. Int., 122 (2019) 52–66.
  54. R. Pandiyan, S. Ayyaru, Y.-H. Ahn, Non-toxic properties of TiO2 and STiO2 nanocomposite PES ultrafiltration membranes for application in membrane-based environmental biotechnology, Ecotoxicol. Environ. Saf., 158 (2018) 248–255.
  55. K. Gurung, Membrane Bioreactor for the Removal of Emerging Contaminants from Municipal Wastewater and Its Viability of Integrating Advanced Oxidation Processes, Lappeenranta- Lahti University of Technology LUT, 2019.
  56. M. Clara, B. Strenn, O. Gans, E. Martinez, N. Kreuzinger, H. Kroiss, Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants, Water Res., 39 (2005) 4797–4807.
  57. N. Bolong, A.F. Ismail, M.R. Salim, T. Matsuura, A review of the effects of emerging contaminants in wastewater and options for their removal, Desalination, 239 (2009) 229–246.
  58. L. Rizzo, Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment, Water Res., 45 (2011) 4311–4340.
  59. M. Ibáñez, E. Gracia-Lor, L. Bijlsma, E. Morales, L. Pastor, F. Hernández, Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone, J. Hazard. Mater., 260 (2013) 389–398.
  60. M. Brienza, M.M. Ahmed, A. Escande, G. Plantard, L. Scrano, S. Chiron, S.A. Bufo, V. Goetz, Use of solar advanced oxidation processes for wastewater treatment: Follow-up on degradation products, acute toxicity, genotoxicity and estrogenicity, Chemosphere, 148 (2016) 473–480.
  61. E. Rott, B. Kuch, C. Lange, P. Richter, A. Kugele, R. Minke, Removal of emerging contaminants and estrogenic activity from wastewater treatment plant effluent with UV/chlorine and UV/H2O2 advanced oxidation treatment at pilot scale, Int. J. Environ. Res. Public Health, 15 (2018) 1–18, doi: 10.3390/ijerph15050935.
  62. S.A. Fast, V.G. Gude, D.D. Truax, J. Martin, B.S. Magbanua, A critical evaluation of advanced oxidation processes for emerging contaminants removal, Environ. Process., 4 (2017) 283–302.
  63. P.A. Neale, Å.K. Jämting, B.I. Escher, J. Herrmann, A review of the detection, fate and effects of engineered nanomaterials in wastewater treatment plants, Water Sci. Technol., 68 (2013) 1440–1453.