References

  1. I. Bojakowska, T. Gliwicz, Results of Geochemical Studies of Water Sediments in Poland in the Years 2000–2002, Biblioteka Monitoringu Środowiska, Warszawa, 2003.
  2. R. Kalinowski, M. Załęska-Radziwiłł, Determination of sediments’ quality standards with the use of ecotoxicological studies, Ochron. Środ. Zasob. Natur., 40 (2009) 549–560.
  3. L. Mielnik, Influence of Basin Usage on Physicochemical Properties of Lake Sediments, Institute of Agricultural Engineering, Agricultural University, Szczecin, 2010 (electronic file, accessed December 12, 2012).
  4. K. Barbusiński, W. Nocoń, The content of heavy metal compounds in the bottom sediments of Kłodnica, Ochr. Sr., 33 (2011) 13–17.
  5. M. Strzelec, A. Spyra, W. Serafiński, Inland Water Biology, University of Silesia Publishing, Katowice, 2010.
  6. T.M. Traczewska, Biological Methods for Assessing the Environmental Contamination, Wrocław University of Technology Publishing, Wrocław, 2011.
  7. A. Masiá, J. Campo, P. Vázquez Roig, C. Blasco, Y. Pico, Screening of currently used pesticides in water, sediments and biota of the Guadalquivir River Basin (Spain), J. Hazard. Mater., 1 (2013) 95–104.
  8. M. Köck-Schulmeyer, M. Olmos, M. López de Alda, D. Barceló, Development of a multiresidue method for analysis of pesticides in sediments based on isotope dilution and liquid chromatography-electrospray-tandem mass spectrometry, J. Chromatogr. A, 1305 (2013) 176–87.
  9. N. de Castro-Catala, M. Kuzmanovic, N. Roig, J. Sierra, A. Ginebreda, D. Barceló, S. Pérez, M. Petrovic, Y. Picó, M. Schuhmacher, I. Munoz, Ecotoxicity of sediments in rivers: invertebrate community, toxicity bioassays and toxic unit approach as complementary assessment tools, Sci. Total Environ., 540 (2016) 297–306.
  10. H. Hollert, M. Dürr, L. Erdinger, T. Braunbeck, Cytotoxicity of settling particulate matter and sediments of the Neckar River (Germany) during a winter flood, Environ. Toxicol. Chem., 19 (2000) 528–534.
  11. M. Działoszyńska Wawrzkiewicz, Heavy Metals in River Sediments of Urbanized Areas of the Kłodnica River Basin, 2008. Available at: http://www.ietu.katowice.pl/klodnica/dokumenty/Publikacje/osady_monografia.pdf (accessed December 10, 2012).
  12. Chief Inspectorate for Environmental Protection, Assessment of Pollution Levels of Rivers and Lakes in 2012. Available at: http:// ekoinfonet.gios.gov.pl/osady/mapa/realizacja.html (accessed April 15, 2010).
  13. I. Bojakowska, Criteria for assessing the pollution of water sediments, Przeg. Geol., 49 (2001) 213–218.
  14. D. MacDonald, C. Ingersoll, T. Berger, Development and Evaluation of consensus-based sediment development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems, Arch. Environ. Contam. Toxicol., 39 (2000) 20–31.
  15. F. Wang, A.O.W. Leung, S.C. Wu, M.S. Yang, M. Wong, Chemical and ecotoxicological analyses of sediments and elutriates of contaminated rivers due to e-waste recycling activities using a diverse battery of bioassays, Environ. Pollut., 157 (2009) 2082–2090.
  16. S. Ahmad, Oxidative stress from environmental pollutants, Arch. Insect Biochem. Physiol., 29 (1995) 135–157.
  17. M. Żaak, Detoxification Possibilities of Subsequent Generations of Caterpillars of the Chestnut Beetle Cameraria ohridella (Lepidoptera: Gracillariidae) under Conditions of Insecticide (Imidacloprid), Dissertation, University of Silesia in Katowice, 2008.
  18. L.B. Printes, M.N. Fernandes, E.L.G. Espíndola, Laboratory measurements of biomarkers and individual performances in Chironomus xanthus to evaluate pesticide contamination of sediments in a river of southeastern Brazil, Ecotoxicol. Environ. Saf., 74 (2011) 424–430.
  19. G. Bartosz, The Second Face of Oxygen - Free Radicals in Nature, Polish Scientific Publishers, Warszawa, 2013.
  20. D.M. Soderlund, J.R. Bloomquist, Molecular Mechanisms of Insecticide Resistance, R.T. Roust, B.E. Tabashnik, Eds., Pesticide Resistance in Arthropods, Routledge Chapman and Hall Inc., New York, NY, 1999, pp. 58–96.
  21. T. Satoh, Toxicological implications of esterases - from molecular structures to functions, Toxicol. Appl. Pharmacol., 207 (2005) 11–18.
  22. T.S. Galloway, N. Millward, M.A. Browne, M.H. Depledge, Rapid assessment of organophosphorus/carbamate exposure in the bivalve mollusc Mytilus edulis using combined esterase activities as biomarkers, Aquat. Toxicol., 61 (2002) 169–180.
  23. V. Contardo-Jara, C. Wiegand, Biotransformation and antioxidant enzymes of Lumbriculus variegates as biomarkers of contaminated sediment exposure, Chemosphere, 70 (2008) 1879–1888.
  24. M. Solé, J. Kopecka-Pilarczyk, J. Blasco J., Pollution biomarkers in two estuarine invertebrates, Nereis diversicolor and Scrobicularia plana, from a Marsh ecosystem in SW Spain, Environ. Int., 35 (2009) 523–531.
  25. R. Bettinetti, D. Cuccato, S. Galassi, A. Provini, Toxicity of 4-nonylphenol in spiked sediment to three populations of Chironomus riparius, Chemosphere, 46 (2002) 201–207.
  26. N.E. Kemble, D.K. Hardesty, C.G. Ingersoll, J.L. Kunz, P.K. Sibley, D.L. Calhoun, R.J. Gilliom, K.M. Kuivila, L.H. Nowell, P.W. Moran, Contaminants in stream sediments from seven United States metropolitan areas: part II – sediment toxicity to the amphipod Hyalella azteca and the midge Chironomus dilutes, Arch. Environ. Contam. Toxicol., 64 (2013) 52–64.
  27. J. Ramos-Gómez, A. Coz, J.R. Viguri, A. Luque, M.L. Martín-Díaz, T.Á. Del Valls, Biomarker responsiveness in different tissues of caged Ruditapes philippinarum and its use within an integrated sediment quality assessment, Environ. Pollut., 159 (2011) 1914–1922.
  28. A. Pasteris, M. Vecchi, T.B. Reynoldson, G. Bonomi, Toxicity of copper-spiked sediments to Tubifex tubifex (Oligochaeta: Tubificidae): a comparison of the 28-day reproductive bioassay with a 6-month cohort experiment, Aquat. Toxicol., 65 (2003) 235–265.
  29. M. Smutna, K. Hilscherova, V. Paskova, B. Marsalek, Biochemical parameters in Tubifex tubifex as an integral part of complex sediment toxicity assessment, J. Soils Sediments, 8 (2008) 154–164.
  30. M.L. Martín-Díaz, J. Blasco, D. Sales, T.A. Del Valls, Biomarkers as tools to assess sediment quality, Laboratory and field surveys, TrAC, Trends Anal. Chem., 23 (2004) 807–818.
  31. A. Arendarczyk, A. Jakubowska, A. Zgórska, E. Grabińska-Sota, Toxic effects of cadmium-spiked sediments in Tubifex tubifex: enzyme biomarkers measurements, Desal. Water Treat., 52 (2014) 19–21.
  32. S. Di, R. Liu, C. Cheng, L. Chen, W. Zhang, Biomarkers in Tubifex tubifex for the metalaxyl and metalaxyl-M toxicity assessment in artificial sediment, Environ. Sci. Pollut. Res., 24 (2017) 3618–3625.
  33. F. Regoli, Trace metals and antioxidant enzymes in gills and digestive gland of the Mediterranean mussel Mytilus galloprovincialis, Arch. Environ. Contam. Toxicol., 34 (1998) 48–63.
  34. G.A. Burton Jr., M.S. Greenberg, C.D. Rowland, C.A. Irvine, D.R. Lavoie, J.A. Brooker L. Moore, D.F. Raymer, R.A. McWilliam, In situ exposures using caged organisms: a multi-compartment approach to detect aquatic toxicity and bioaccumulation, Environ. Pollut., 134 (2005) 133–144.
  35. Voivodship Inspectorate for Environmental Protection, WIOŚ, Environmental Condition in the Silesian Voivodship in 2008, Biblioteka Monitoringu Środowiska, Katowice, 2009. Available at: http://www.katowice.pios.gov.pl/index. php?tekst=monitoring/raporty/2009/i (accessed April 11, 2010).
  36. OECD, Guidelines for the Testing of Chemicals, Section 2 Test No. 233: Sediment-Water Chironomid Life-Cycle Toxicity Test Using Spiked Water or Spiked Sediment, 2010.
  37. R. Oplinger, M. Bartley, E. Wagner, Culture of Tubifex tubifex: effect of feed type ration, temperature, and density on juvenile recruitment, production, and adult survival, N. Am. J. Aquacult., 73 (2011) 68–75.
  38. S. Paris-Palacios, Y.Y. Mosleh, M. Almohamad, L. Delahaut, A. Conrad, F. Arnoult, Toxic effects and bioaccumulation of the herbicide isoproturon in Tubifex tubifex (Oligocheata, Tubificidae): a study of significance of autotomy and its utility as a biomarker, Aquat. Toxicol., 98 (2010) 8–14.
  39. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding, Anal. Biochem., 72 (1976) 248–254.
  40. L. Goth, A simple method for determination of serum catalase activity and revision of reference range, Clin. Chim. Acta, 196 (1991) 143–152.
  41. K. van Asperen, A study of house fly esterases by means of a sensitive colorimetric method, J. Insect. Physiol., 8 (1962) 401–416.
  42. W.H. Habig, M.J. Pabst, W.B. Jakoby, Glutathione-S-transferase. The first enzymatic step in mercapturic acid formation, J. Biol. Chem., 249 (1974) 7130–7139.
  43. S.J. Yu, Insect glutathione S-Transferases, Zool. Stud., 35 (1996) 9–19.
  44. H.P. Mistra, J. Fridovich, The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem., 247 (1972) 3170–3175.
  45. PN-ISO 14235:2003, Soil Quality, Determination of the Organic Carbon Content by Oxidation with Dichromate (IV) in a Sulfuric Acid Medium (IV).
  46. PN-ISO 10390:1997, Soil Quality, pH Determination.
  47. PN-EN 14346:2011, Characterization of Waste, Calculation of Dry Matter Based on the Determination of Dry Residue or Water Content.
  48. PN-EN 15935:2013-02, Sewage Sludge, Treated Bio-Waste, Soil and Waste, Determination of Losses during Roasting.
  49. Chief Inspectorate for Environmental Protection, GIOŚ, Evaluation of Research Results from 2011, Available at: http:// ekoinfonet.gios.gov.pl/osady/mapa/realizacja.html (accessed April 15, 2013).
  50. Choi J, Biomarkers in Environmental Monitoring and Its Application in Chironomus spp., S.-K. Hong, J.A. Lee, B.-S. Ihm, A. Farina, Y. Son, E.-S. Kim, J.C. Choe, Eds., Ecological Issues in a Changing World, Kluwer Academic Publishers, Netherlands, 2004, pp. 203–215.
  51. P.D. Hansen, Biomarkers, B.A. Markert, A.M. Breure, H.G. Zechmeister, Eds., Bioindicators and Biomonitors, Principles, Concepts and Applications, Elsevier, Amsterdam, Boston, London, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 2003, pp. 203–220.
  52. W.C. Dauterman, Insect Metabolism: Extramicrosomal, G.A. Kerkut, I.L.I. Gilbert, Eds., Comprehensive Insect Physiology, Biochemical Pharmacology, Pergamen Press, Oxford, New York, NY, 1985, pp. 713–730.
  53. C. Barata, A. Solayan, C. Porte, Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna, Aquat. Toxicol., 66 (2004) 125–139.
  54. G. Kristoff, N.R. Verrengia Guerrero, A.C. Cochón, Inhibition of cholinesterases and carboxylesterases of two invertebrate species, Biomphalaria glabrata and Lumbriculus variegatus, by the carbamate pesticide carbaryl, Aquat. Toxicol., 96 (2010) 115–123.
  55. M. Świderska-Bróż, The effect of pH on toxicity and removal of heavy metals from natural waters, Ochr. Sr., 3 (1982) 16–20.
  56. G. Wilczek, P. Kramarz, A. Babczyńska, Activity of carboxylesterase and glutathione S-transferase in different lifestages of carabid beetle (Poecilus cupreus) exposed to toxic metal concentrations, Comp. Biochem. Physiol., 134 (2003) 501–512.
  57. R.W. Wadleigh, S.J. Yu, Glutathione transferase activity of fall armyworm larvae toward α,β-unsaturated carbonyl allelochemicals and its induction by allelochemicals, Insect Biochem., 17 (1987) 759–764.
  58. A. Khessiba, M. Hoarau, P. Guassia-Barelli, R. Aissa, M. Romeo, Biochemical response of the mussel Mytilus galloprovincialis from Bizerta (Tunisia) to chemical pollutant exposure, Arch. Environ. Contam. Toxicol., 40 (2001) 222–229.
  59. B.A. Loosie, D.A. Holwerda, E.M. Foekema, Induction of glutathione-S-transferase in the freshwater bivalve Sphaerium corneum as a biomarker for short-term toxicity test, Comp. Biochem. Physiol., 113 (1996) 103–107.
  60. M. Ismert, T. Oster, D. Bagrel, Effects of atmospheric exposure to naphthalene on xenobiotic-metabolising enzymes in the snail Helix aspersa, Chemosphere, 46 (2002) 273–280.
  61. L. Canesi, A. Viarengo, C. Leonzio, M. Filippelli, G. Gallo, Heavy metals and glutathione metabolism in mussel tissues, Aquat. Toxicol., 46 (1999) 67–76.
  62. S.M. Moreira, L. Guilhermino, The use of Mytilus galloprovincialis acetylcholinesterase and gluthatione-S-transferase activities as biomarkers of environmental contamination along the northwest Portuguese coast, Environ. Monit. Assess., 105 (2005) 309–325.
  63. I. Cunha, E. Mangas-Ramirez, L. Guilhermino, Effects of copper and cadmium on cholinesterase and glutathione-S-transferase activities of two marine gastropods (Monodonta lineata and Nucella lapillus), Comp. Biochem. Physiol., 145 (2007) 648–657.
  64. P.M.G. Nair, S.Y. Park, J. Choi, Expression of catalase and glutathione S-transferase genes in Chironomus riparius on exposure to cadmium and nonylphenol, Comp. Biochem. Physiol., 154 (2011) 399–408.
  65. P. Chelikani, I. Fita, P.C. Loewen, Diversity of structures and properties among catalases, Cell. Mol. Life Sci., 61 (2004) 192–208.
  66. Y.Y. Mosleh, S. Paris-Palacios, M. Couderchet, S. Biagianti-Risbourg, G. Vernet, Metallothionein induction, antioxidative responses, glycogen and growth changes in Tubifex tubifex (Oligochaeta) exposed to the fungicide, fenhexamid, Environ. Pollut., 135 (2005) 73–82.
  67. Y.Y. Mosleh, S. Paris-Palacios, M.T. Ahmed, F.M. Mahmoud, M.A. Osman, S. Biagianti-Risbourga, Effects of chitosan on oxidative stress and metallothioneins in aquatic worm Tubifex tubifex (Oligochaea, Tubificidae), Chemosphere, 67 (2007) 167–175.
  68. F. Antunes, E. Cadenas, Estimation of H2O2 gradients across biomembranes, FEBS Lett., 475 (2000) 121–126.