References

  1. B.A.G. de Melo, F.L. Motta, M.H.A. Santana, Humic acids: structural properties and multiple functionalities for novel technological developments, Mater. Sci. Eng., C, 62 (2016) 967–974.
  2. F.J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions, 2nd ed., John Wiley & Sons, Inc., New York, 1994.
  3. R. Sutton, G. Sposito, Molecular structure in soil humic substances: the new view, Environ. Sci. Technol., 39 (2005) 9009–9015.
  4. H.G. Sanjay, A.K. Fataftah, D.S. Walia, K.C. Srivastava, K.C., In: E.A. Ghabbour, G. Davies, Eds., Understanding Humic Substances: Advanced Methods, Properties and Applications, The Royal Society of Chemistry, Cambridge, 1999, pp. 241–255.
  5. M. Klavins, O. Purmalis, Properties and structure of raised bog peat humic acids, J. Mol. Struct., 1050 (2013) 103–113.
  6. M. Fuentes, R. Baigorri, G. González-Gaitano, J.M. García-Mina, New methodology to assess the quantity and quality of humic substances in organic materials and commercial products for agriculture, J. Soil Sediment, 18 (2018) 1389–1399.
  7. E.M. Peña-Méndez, J. Havel, J. Patočka, Humic substances— compounds of still unknown structure: applications in agriculture, industry, environment, and biomedicine, J. Appl. Biomed., 3 (2005) 13–24.
  8. M. Huculak-Mączka, J. Hoffmann, K. Hoffmann, Evaluation of the possibilities of using humic acids obtained from lignite in the production of commercial fertilizers, J. Soils Sediments, 18 (2018) 2868–2880.
  9. L.P. Canellas, F.L. Olivares, N.O. Aguiar, D.L. Jones, A. Nebbioso, P. Mazzei, A. Piccolo, Humic and fulvic acids as biostimulants in horticulture, Sci. Hortic., 196 (2015) 15–27.
  10. Z. Zhao, W. Yuquan, Z. Yun, W. Xin, X. Beidou, Z. Xinyu, Z. Xu, Z. Zhang, W. Zimin, Roles of composts in soil based on the assessment of humification degree of fulvic acids, Ecol. Indic., 72 (2017) 473–480.
  11. M. Trckova, A. Lorencova, V. Babak, J. Neca, M. Ciganek, The effect of leonardite and lignite on the health of weaned piglets, Res. Vet. Sci., 119 (2018) 134–142.
  12. Industry Partnerships of Deploy Environmental Technology, Morgantown, West Virginia, October 22–24, 1996. Available at: https://www.osti.gov/servlets/purl/492083.
  13. E.A. Ghabbour, G. Davies, Humic Substances: Molecular Details and Applications in Land and Water Conservation, Taylor & Francis, Inc., New York, 2005.
  14. H. Martyniuk, J. Więckowska, Adsorption of metal ions on humic acids extracted from brown coals, Fuel Process. Technol., 84 (2003) 23–36.
  15. E. Pehlivan, G. Arslan, Removal of metal ions using lignite in aqueous solution—low cost biosorbents, Fuel Process. Technol., 88 (2007) 99–106.
  16. M. Skokanova, K. Dercova, Use of humic acids for bioremediation of soil polluted with pentachlorophenol, Humic Subst. Ecosyst., 7 (2007) 95–99.
  17. I. Krupińska, Problems Associated with Humic Substances in the Groundwater, Zeszyty naukowe nr 148, Wyd. Uniwersytetu Zielonogórskiego, 28, 2012, pp. 55–73 (in Polish), Available at: http://zbc.uz.zgora.pl/Content/27347/PDF/ZN%20UZ%20 II%C5%9A%20148_28.pdf.
  18. J. Pempkowiak, H. Obarska-Pempkowiak, M. Gajewska, D. Ruta, Oczyszczone ścieki źródłem kwasów humusowych w wodach powierzchniowych, Przem. Chem., 87 (2008) 542–545.
  19. C.U. Demirel, C. Hellriegel, W. Otto, C.K. Larive, Characterization of humic substances: implications for trihalomethane formation, Anal. Bioanal. Chem., 378 (2004) 1579–1586.
  20. D. Łomińska, Humic substances as by-product precursors generated during oxidation and disinfection – review of the literature, Tech. Trans. Environ. Eng., 1 (2016) 73–85.
  21. T. Bond, E.H. Goslan, S.A. Parson, B. Jefferson, Ax critical review of trihalomethane and haloacetic acid formation from natural organic matter surrogates, Environ. Technol. Rev., 1 (2012) 93–113.
  22. WHO, Trihalomethanes in Drinking-water, World Health Organization Report, 2005. Available at: https://www.who.int/ water_sanitation_health/dwq/chemicals/THM200605.pdf
  23. D.M. Ruthven, Principles of Adsorption and Adsorption Processes, John Wiley & Sons, Inc., New York, 1984.
  24. G. McKay, M.J. Bino, A.R. Altamemi, The adsorption of various pollutants from aqueous solutions on to activated carbon, Water Res., 19 (1985) 491–495.
  25. H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I. Wright, Progress in carbon dioxide separation and capture: a review, J. Environ. Sci., 20 (2008) 14–27.
  26. C.L. Cavalcante Jr., Industrial adsorption separation processes: fundamentals, modeling and applications, Lat. Am. Appl. Res., 30 (2000) 357–364.
  27. E. Lorenc-Grabowska, G. Gryglewicz, Adsorption of lignitederived humic acids on coal-based mesoporous activated carbons, J. Colloid Interface Sci., 284 (2005) 416–423.
  28. E. Repo, T.A. Kurniawan, J.K.Warchol, M.E.T. Sillanpää, Removal of Co(II) and Ni(II) ions from contaminated water using silica gel functionalized with EDTA and/or DTPA as chelating agents, J. Hazard. Mater., 171 (2009) 1071–1080.
  29. N. Jiang, R. Shang, S.G.J. Heijman, L.C. Rietveld, High-silica zeolites for adsorption of organic micro-pollutants in water treatment: a review, Water Res., 144 (2018) 145–161.
  30. J.M. Dias, M.C.M Alvim-Ferraz, M.F. Almeida, J. Rivera- Utrilla, M. Sanchez-Polo, Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review, J. Environ. Manage., 85 (2007) 833–846.
  31. A. Kołodziej, M. Fuentes, R. Baigorri, E. Lorenc-Grabowska, J.M. Graia-Mina, P. Burg, G. Gryglewicz, Mechanism of adsorption of different humic acid fractions on mesoporous activated carbons with basic surface characteristics, Adsorption, 20 (2014) 667–675.
  32. J. Ilavsky, D. Barlokova, O. Kapusta, Removal of Humic Substances in Water by Granular Activated Carbon, Environmental Engineering, 10th International Conference eISSN 2029- 7092/eISBN 978-609-476-044-0 Vilnius Gediminas Technical University Lithuania, 27–28 April 2017, https://doi.org/10.3846/ enviro.2017.078.
  33. M.A. Tadda, A. Ahsan, A. Shitu, M. Elsergany, T. Arunkumar, B. Jose, M.A. Razzaque, N.N. Nik Daud, A review on activated carbon: process, application and prospects, J. Adv. Civ. Eng. Pract. Res., 2 (2016) 7–13.