References
- B.A.G. de Melo, F.L. Motta, M.H.A. Santana, Humic acids:
structural properties and multiple functionalities for novel
technological developments, Mater. Sci. Eng., C, 62 (2016)
967–974.
- F.J. Stevenson, Humus Chemistry: Genesis, Composition,
Reactions, 2nd ed., John Wiley & Sons, Inc., New York, 1994.
- R. Sutton, G. Sposito, Molecular structure in soil humic
substances: the new view, Environ. Sci. Technol., 39 (2005)
9009–9015.
- H.G. Sanjay, A.K. Fataftah, D.S. Walia, K.C. Srivastava, K.C.,
In: E.A. Ghabbour, G. Davies, Eds., Understanding Humic
Substances: Advanced Methods, Properties and Applications,
The Royal Society of Chemistry, Cambridge, 1999, pp. 241–255.
- M. Klavins, O. Purmalis, Properties and structure of raised bog
peat humic acids, J. Mol. Struct., 1050 (2013) 103–113.
- M. Fuentes, R. Baigorri, G. González-Gaitano, J.M. García-Mina,
New methodology to assess the quantity and quality of humic
substances in organic materials and commercial products for
agriculture, J. Soil Sediment, 18 (2018) 1389–1399.
- E.M. Peña-Méndez, J. Havel, J. Patočka, Humic substances—
compounds of still unknown structure: applications in
agriculture, industry, environment, and biomedicine, J. Appl.
Biomed., 3 (2005) 13–24.
- M. Huculak-Mączka, J. Hoffmann, K. Hoffmann, Evaluation
of the possibilities of using humic acids obtained from lignite
in the production of commercial fertilizers, J. Soils Sediments,
18 (2018) 2868–2880.
- L.P. Canellas, F.L. Olivares, N.O. Aguiar, D.L. Jones,
A. Nebbioso, P. Mazzei, A. Piccolo, Humic and fulvic acids as
biostimulants in horticulture, Sci. Hortic., 196 (2015) 15–27.
- Z. Zhao, W. Yuquan, Z. Yun, W. Xin, X. Beidou, Z. Xinyu,
Z. Xu, Z. Zhang, W. Zimin, Roles of composts in soil based on
the assessment of humification degree of fulvic acids, Ecol.
Indic., 72 (2017) 473–480.
- M. Trckova, A. Lorencova, V. Babak, J. Neca, M. Ciganek, The
effect of leonardite and lignite on the health of weaned piglets,
Res. Vet. Sci., 119 (2018) 134–142.
- Industry Partnerships of Deploy Environmental Technology,
Morgantown, West Virginia, October 22–24, 1996. Available at:
https://www.osti.gov/servlets/purl/492083.
- E.A. Ghabbour, G. Davies, Humic Substances: Molecular
Details and Applications in Land and Water Conservation,
Taylor & Francis, Inc., New York, 2005.
- H. Martyniuk, J. Więckowska, Adsorption of metal ions on
humic acids extracted from brown coals, Fuel Process. Technol.,
84 (2003) 23–36.
- E. Pehlivan, G. Arslan, Removal of metal ions using lignite in
aqueous solution—low cost biosorbents, Fuel Process. Technol.,
88 (2007) 99–106.
- M. Skokanova, K. Dercova, Use of humic acids for bioremediation
of soil polluted with pentachlorophenol, Humic
Subst. Ecosyst., 7 (2007) 95–99.
- I. Krupińska, Problems Associated with Humic Substances in
the Groundwater, Zeszyty naukowe nr 148, Wyd. Uniwersytetu
Zielonogórskiego, 28, 2012, pp. 55–73 (in Polish), Available at:
http://zbc.uz.zgora.pl/Content/27347/PDF/ZN%20UZ%20
II%C5%9A%20148_28.pdf.
- J. Pempkowiak, H. Obarska-Pempkowiak, M. Gajewska,
D. Ruta, Oczyszczone ścieki źródłem kwasów humusowych
w wodach powierzchniowych, Przem. Chem., 87 (2008)
542–545.
- C.U. Demirel, C. Hellriegel, W. Otto, C.K. Larive, Characterization
of humic substances: implications for trihalomethane
formation, Anal. Bioanal. Chem., 378 (2004) 1579–1586.
- D. Łomińska, Humic substances as by-product precursors
generated during oxidation and disinfection – review of the
literature, Tech. Trans. Environ. Eng., 1 (2016) 73–85.
- T. Bond, E.H. Goslan, S.A. Parson, B. Jefferson, Ax critical
review of trihalomethane and haloacetic acid formation from
natural organic matter surrogates, Environ. Technol. Rev.,
1 (2012) 93–113.
- WHO, Trihalomethanes in Drinking-water, World Health
Organization Report, 2005. Available at: https://www.who.int/
water_sanitation_health/dwq/chemicals/THM200605.pdf
- D.M. Ruthven, Principles of Adsorption and Adsorption
Processes, John Wiley & Sons, Inc., New York, 1984.
- G. McKay, M.J. Bino, A.R. Altamemi, The adsorption of various
pollutants from aqueous solutions on to activated carbon, Water
Res., 19 (1985) 491–495.
- H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland,
I. Wright, Progress in carbon dioxide separation and capture:
a review, J. Environ. Sci., 20 (2008) 14–27.
- C.L. Cavalcante Jr., Industrial adsorption separation processes:
fundamentals, modeling and applications, Lat. Am. Appl. Res.,
30 (2000) 357–364.
- E. Lorenc-Grabowska, G. Gryglewicz, Adsorption of lignitederived
humic acids on coal-based mesoporous activated
carbons, J. Colloid Interface Sci., 284 (2005) 416–423.
- E. Repo, T.A. Kurniawan, J.K.Warchol, M.E.T. Sillanpää,
Removal of Co(II) and Ni(II) ions from contaminated water
using silica gel functionalized with EDTA and/or DTPA as
chelating agents, J. Hazard. Mater., 171 (2009) 1071–1080.
- N. Jiang, R. Shang, S.G.J. Heijman, L.C. Rietveld, High-silica
zeolites for adsorption of organic micro-pollutants in water
treatment: a review, Water Res., 144 (2018) 145–161.
- J.M. Dias, M.C.M Alvim-Ferraz, M.F. Almeida, J. Rivera-
Utrilla, M. Sanchez-Polo, Waste materials for activated carbon
preparation and its use in aqueous-phase treatment: a review,
J. Environ. Manage., 85 (2007) 833–846.
- A. Kołodziej, M. Fuentes, R. Baigorri, E. Lorenc-Grabowska,
J.M. Graia-Mina, P. Burg, G. Gryglewicz, Mechanism of
adsorption of different humic acid fractions on mesoporous
activated carbons with basic surface characteristics, Adsorption,
20 (2014) 667–675.
- J. Ilavsky, D. Barlokova, O. Kapusta, Removal of Humic
Substances in Water by Granular Activated Carbon, Environmental
Engineering, 10th International Conference eISSN 2029-
7092/eISBN 978-609-476-044-0 Vilnius Gediminas Technical
University Lithuania, 27–28 April 2017, https://doi.org/10.3846/
enviro.2017.078.
- M.A. Tadda, A. Ahsan, A. Shitu, M. Elsergany, T. Arunkumar,
B. Jose, M.A. Razzaque, N.N. Nik Daud, A review on activated
carbon: process, application and prospects, J. Adv. Civ. Eng.
Pract. Res., 2 (2016) 7–13.