References
- M.E. Vance, T. Kuiken, E.P. Vejerano, S.P. McGinnis,
M.F. Hochella Jr., D. Rejeski, M.S. Hull, Nanotechnology in the
real world: redeveloping the nanomaterial consumer products
inventory, Beilstein J. Nanotechnol., 6 (2015) 1769–1780.
- G. Applerot, J. Lellouche, A. Lipovsky, Y. Nitzan, R. Lubart,
A. Gedanken, E. Banin, Understanding the antibacterial
mechanism of CuO nanoparticles: revealing the route of
induced oxidative stress, Small, 8 (2012) 3326–3337.
- J. Zhao, Z. Wang, Y. Dai, B. Xing, Mitigation of CuO nanoparticle
induced bacterial membrane damage by dissolved organic
matter, Water Res., 47 (2013) 4169–4178.
- A. Srivastava, Antiviral activity of copper complexes of
isoniazid against RNA tumor viruses, Resonance, 14 (2009)
754–760.
- G. Grass, C. Rensing, M. Solioz, Metallic copper as an antimicrobial
surface, Appl. Environ. Microbiol., 77 (2011) 1541–1547.
- M. Raffi, S. Mehrwan, T.M. Bhatti, J.I. Akhter, A. Hameed,
W. Yawar, M.M. Hasan, Investigations into the antibacterial
behavior of copper nanoparticles against Escherichia coli, Ann.
Microbiol., 60 (2010) 75–80.
- A.K. Chatterjee, R.K. Sarkar, A.P. Chattopadhyay, P. Aich,
R. Chakraborty, T. Basu, A simple robust method for synthesis
of metallic copper nanoparticles of high antibacterial potency
against E. Coli, Nanotechnology, 23 (2012) 85–103.
- A.A. Keller, S. Mcferran, A. Lazareva, S. Suh, Global life
cycle releases of engineered nanomaterials, J. Nanopart. Res.,
15 (2013) 1692.
- S. Sharifi, S. Behzadi, S. Laurent, M.L. Forrest, P. Stroeve,
M. Mahmoudi, Toxicity of nanomaterials, Chem. Soc. Rev.,
41 (2012) 2323–2343.
- F. Gottschalk, T. Sonderer, R.W. Scholz, B. Nowack, Modeled
environmental concentrations of engineered nanomaterials
(TiO2, ZnO, Ag, CNT, fullerenes) for different regions, Environ.
Sci. Technol., 43 (2009) 9216–9222.
- L. Miao, C. Wang, J. Hou, P. Wang, Y. Ao, Y. Li, G. You,
Aggregation and removal of copper oxide (CuO) nanoparticles
in wastewater environment and their effects on the microbial
activities of wastewater biofilms, Bioresour. Technol., 216 (2016)
537–544.
- S.K. Brar, M. Verma, R.D. Tyagi, R.Y. Surampalli, Engineered
nanoparticles in wastewater and wastewater sludge – evidence
and impacts, Waste Manage., 30 (2010) 504–520.
- K.L. Garner, A.A. Keller, Emerging patterns for engineered
nanomaterials in the environment: a review of fate and toxicity
studies, J. Nanopart. Res., 16 (2014) 1–28.
- Z. Wang, L. Zhang, J. Zhao, B. Xing, Environmental processes
and toxicity of metallic nanoparticles in aquatic systems as
affected by natural organic matter, Environ. Sci. Nano, 3 (2016)
240–255.
- Y. Yang, C. Zhang, Z. Hu, Impact of metallic and metal oxide
nanoparticles on wastewater treatment and anaerobic digestion,
Environ. Sci. Processes Impacts, 15 (2013) 39–48.
- M. Madeła, E. Neczaj, A. Grosser, Fate of engineered
nanoparticles in wastewater treatment plant, Eng. Prot.
Environ., 19 (2016) 577–587.
- M. Madeła, E. Neczaj, M. Worwąg, A. Grosser, Environmental
hazards of nanoparticles, Chem. Ind., 94 (2015) 2138–2141
(in Polish).
- H. Chen, X. Li, Y. Chen, Y. Liu, H. Zhang, G. Xue, Performance
of wastewater biological phosphorus removal under long-term
exposure to CuNPs: adapting toxicity via microbial community
structure adjustment, RSC Adv., 5 (2015) 61094–61102.
- H. Chen, X. Zheng, Y. Chen, M. Li, K. Liu, X. Li, Influence of
copper nanoparticles on the physical-chemical properties of
activated sludge, PLoS One, 9 (2014) 92871.
- L. Gu, Q. Li, X. Quan, Y. Cen, X. Jiang, Comparison of nanosilver
removal by flocculent and granular sludge and short-and longterm
inhibition impacts, Water Res., 58 (2014) 62–70.
- APHA-AWWA-WEF, Standard Methods for the Examination
of Water and Wastewater, 18th ed., American Public Health
Association-American Water Works Association-Water
Environment Federation, Washington, DC, 1992.
- P. Madoni, A sludge biotic index (SBI) for the evaluation of the
biological performance of activated sludge plants based on the
microfauna analysis, Water Res., 28 (1994) 67–75.
- D. Zhang, A.P. Trzcinski, H.-S. Oh, E. Chew, S.K. Tan, W.J. Ng,
Y. Liu, Comparison and distribution of copper oxinanoparticles
and copper ions in activated sludge reactors, J. Environ. Sci.
Health. Part A Toxic/Hazard. Subst. Environ. Eng., 52 (2017)
507–514.
- S. Wang, Z. Li, M. Gao, Z. She, B. Ma, L. Guo, F. Gao, Longterm
effects of cupric oxide nanoparticles (CuO NPs) on the
performance, microbial community and enzymatic activity
of activated sludge in a sequencing batch reactor, J. Environ.
Manage., 187 (2017) 330–339.
- P. Madoni, D. Davoli, G. Gorbi, Toxic effect of heavy metals
on the activated sludge protozoan community, Water Res.,
30 (1996) 135–141.
- M. Madeła, Impact of silver nanoparticles on wastewater
treatment in the SBR, E3S Web Conf., 86 (2019) 00027.
- D.H. Eikelboom, Process Control of Activated Sludge Plants
by Microscopic Investigation, Latimer Trend & Co. Ltd.,
Plymounth, UK, 2000.
- Z.Z. Zhang, Y.F. Cheng, J. Wu, Y.H. Bai, J.J. Xu, Z.J. Shi,
R.C. Jin, Discrepant effects of metal and metal oxide
nanoparticles on anammox sludge properties: a comparison
between Cu and CuO nanoparticles, Bioresour. Technol.,
266 (2018) 507–515.
- X. Zhang, Y. Zhou, B. Yu, N. Zhang, L. Wang, H. Fu, J. Zhang,
Effect of copper oxide nanoparticles on the ammonia removal
and microbial community of partial nitrification process, Chem.
Eng. J., 328 (2017) 152–158.
- R. Ganesh, J. Smeraldi, T. Hosseini, L. Khatib, B.H. Olson,
D. Rosso, Evaluation of nanocopper removal and toxicity
in municipal wastewaters, Environ. Sci. Technol., 44 (2010)
7808–7813.