References

  1. M.E. Vance, T. Kuiken, E.P. Vejerano, S.P. McGinnis, M.F. Hochella Jr., D. Rejeski, M.S. Hull, Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory, Beilstein J. Nanotechnol., 6 (2015) 1769–1780.
  2. G. Applerot, J. Lellouche, A. Lipovsky, Y. Nitzan, R. Lubart, A. Gedanken, E. Banin, Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress, Small, 8 (2012) 3326–3337.
  3. J. Zhao, Z. Wang, Y. Dai, B. Xing, Mitigation of CuO nanoparticle induced bacterial membrane damage by dissolved organic matter, Water Res., 47 (2013) 4169–4178.
  4. A. Srivastava, Antiviral activity of copper complexes of isoniazid against RNA tumor viruses, Resonance, 14 (2009) 754–760.
  5. G. Grass, C. Rensing, M. Solioz, Metallic copper as an antimicrobial surface, Appl. Environ. Microbiol., 77 (2011) 1541–1547.
  6. M. Raffi, S. Mehrwan, T.M. Bhatti, J.I. Akhter, A. Hameed, W. Yawar, M.M. Hasan, Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli, Ann. Microbiol., 60 (2010) 75–80.
  7. A.K. Chatterjee, R.K. Sarkar, A.P. Chattopadhyay, P. Aich, R. Chakraborty, T. Basu, A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. Coli, Nanotechnology, 23 (2012) 85–103.
  8. A.A. Keller, S. Mcferran, A. Lazareva, S. Suh, Global life cycle releases of engineered nanomaterials, J. Nanopart. Res., 15 (2013) 1692.
  9. S. Sharifi, S. Behzadi, S. Laurent, M.L. Forrest, P. Stroeve, M. Mahmoudi, Toxicity of nanomaterials, Chem. Soc. Rev., 41 (2012) 2323–2343.
  10. F. Gottschalk, T. Sonderer, R.W. Scholz, B. Nowack, Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions, Environ. Sci. Technol., 43 (2009) 9216–9222.
  11. L. Miao, C. Wang, J. Hou, P. Wang, Y. Ao, Y. Li, G. You, Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms, Bioresour. Technol., 216 (2016) 537–544.
  12. S.K. Brar, M. Verma, R.D. Tyagi, R.Y. Surampalli, Engineered nanoparticles in wastewater and wastewater sludge – evidence and impacts, Waste Manage., 30 (2010) 504–520.
  13. K.L. Garner, A.A. Keller, Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies, J. Nanopart. Res., 16 (2014) 1–28.
  14. Z. Wang, L. Zhang, J. Zhao, B. Xing, Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter, Environ. Sci. Nano, 3 (2016) 240–255.
  15. Y. Yang, C. Zhang, Z. Hu, Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion, Environ. Sci. Processes Impacts, 15 (2013) 39–48.
  16. M. Madeła, E. Neczaj, A. Grosser, Fate of engineered nanoparticles in wastewater treatment plant, Eng. Prot. Environ., 19 (2016) 577–587.
  17. M. Madeła, E. Neczaj, M. Worwąg, A. Grosser, Environmental hazards of nanoparticles, Chem. Ind., 94 (2015) 2138–2141 (in Polish).
  18. H. Chen, X. Li, Y. Chen, Y. Liu, H. Zhang, G. Xue, Performance of wastewater biological phosphorus removal under long-term exposure to CuNPs: adapting toxicity via microbial community structure adjustment, RSC Adv., 5 (2015) 61094–61102.
  19. H. Chen, X. Zheng, Y. Chen, M. Li, K. Liu, X. Li, Influence of copper nanoparticles on the physical-chemical properties of activated sludge, PLoS One, 9 (2014) 92871.
  20. L. Gu, Q. Li, X. Quan, Y. Cen, X. Jiang, Comparison of nanosilver removal by flocculent and granular sludge and short-and longterm inhibition impacts, Water Res., 58 (2014) 62–70.
  21. APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 18th ed., American Public Health Association-American Water Works Association-Water Environment Federation, Washington, DC, 1992.
  22. P. Madoni, A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge plants based on the microfauna analysis, Water Res., 28 (1994) 67–75.
  23. D. Zhang, A.P. Trzcinski, H.-S. Oh, E. Chew, S.K. Tan, W.J. Ng, Y. Liu, Comparison and distribution of copper oxinanoparticles and copper ions in activated sludge reactors, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 52 (2017) 507–514.
  24. S. Wang, Z. Li, M. Gao, Z. She, B. Ma, L. Guo, F. Gao, Longterm effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial community and enzymatic activity of activated sludge in a sequencing batch reactor, J. Environ. Manage., 187 (2017) 330–339.
  25. P. Madoni, D. Davoli, G. Gorbi, Toxic effect of heavy metals on the activated sludge protozoan community, Water Res., 30 (1996) 135–141.
  26. M. Madeła, Impact of silver nanoparticles on wastewater treatment in the SBR, E3S Web Conf., 86 (2019) 00027.
  27. D.H. Eikelboom, Process Control of Activated Sludge Plants by Microscopic Investigation, Latimer Trend & Co. Ltd., Plymounth, UK, 2000.
  28. Z.Z. Zhang, Y.F. Cheng, J. Wu, Y.H. Bai, J.J. Xu, Z.J. Shi, R.C. Jin, Discrepant effects of metal and metal oxide nanoparticles on anammox sludge properties: a comparison between Cu and CuO nanoparticles, Bioresour. Technol., 266 (2018) 507–515.
  29. X. Zhang, Y. Zhou, B. Yu, N. Zhang, L. Wang, H. Fu, J. Zhang, Effect of copper oxide nanoparticles on the ammonia removal and microbial community of partial nitrification process, Chem. Eng. J., 328 (2017) 152–158.
  30. R. Ganesh, J. Smeraldi, T. Hosseini, L. Khatib, B.H. Olson, D. Rosso, Evaluation of nanocopper removal and toxicity in municipal wastewaters, Environ. Sci. Technol., 44 (2010) 7808–7813.