References

  1. C. Zhu, F. Li, P. Zhang, J. Ye, P. Lu, H. Wang, Combined sludge conditioning with NaCl cationic polyacrylamide-rice husk powders to improve sludge dewaterability, Powder Technol., 336 (2018) 191–198.
  2. Ch. Zhu, P. Zhang, H. Wang, J. Ye, Conditioning of sewage sludge via combined ultrasonication-flocculation skeleton building to improve sludge dewaterability, Ultrason. Sonochem., 40 (2018) 353–360.
  3. X. Yin, P. Han, X. Lu, Y. Wang, A review on the dewaterability of bio-sludge and ultrasound pretreatment, Ultrason. Sonochem., 11 (2004) 337–348.
  4. M. Worwąg, T. Kamizela, M. Kacprzak, A. Grobelak, Co composting of anaerobic sewage sludge and biomass amended with biopreparations, Desal. Water Treat., 134 (2018) 224–232.
  5. B. Bień, The impact of coagulant PIX 113 modified by ultrasonic field on sewage sludge dewatering, Desal. Water Treat., 117 (2018) 175–180.
  6. G. Zhang, T. Wan, Sludge conditioning by sonication and sonication-chemical methods, Procedia Environ. Sci., 16 (2012) 368–377.
  7. K. Xiao, Y. Chen, X. Jiang, Q. Yang, W.Y. Seow, W. Zhu, Y. Zhou, Variations in physical, chemical and biological properties in relation to sludge dewaterability under Fe(II)–oxone conditioning, Water Res., 109 (2017) 13–23.
  8. Y. Qi, K.B. Thapa, A.F.A. Hoadley, Application of filtration aids for improving sludge dewatering properties a review, Chem. Eng. J., 171 (2011) 373–384.
  9. J. Yang, S. Chen, H. Li, Dewatering sewage sludge by a combination of hydrogen peroxide, jute fiber wastes, and cationic polyacrylamide, Int. Biodeterior. Biodegrad., 128 (2018) 78–84.
  10. K.B. Thapa, Y. Qi, A.F.A. Hoadley, Interaction of polyelectrolyte with digested sewage sludge and lignite in sludge dewatering, Colloids Surf., A, 334 (2009) 66–73.
  11. D. Mowla, H. Tran, D.G. Allen, A review of the properties of biosludge and its relevance to enhanced dewatering processes, Biomass Bioenergy, 58 (2013) 365–378.
  12. B. Wu, K. Horvat, D. Mahajan, X. Chai, D. Yang, X. Dai, Freeconditioning dewatering of sewage sludge through in-situ propane hydrate formation, Water Res., 145 (2018) 464–472.
  13. M.L. Christensen, K. Keiding, P.H. Nielsen, M.K. Jørgensen, Dewatering in biological wastewater treatment: a review, Water Res., 82 (2015) 14–24.
  14. T.A. Mohammad, E.H. Mohamed, J. Megat, M.N. Megat, A.H. Ghazali, Dual polyelectrolytes incorporating Moringa oleifera in the dewatering of sewage sludge, Desal. Water Treat., 55 (2015) 3613–3620.
  15. E. Vega, H. Monclús, R. Gonzalez-Olmos, M.J. Martin, Optimizing chemical conditioning for odor removal of undigested sewage sludge in drying processes, J. Environ. Manage., 150 (2015) 111–119.
  16. Z. Chen, W. Zhang, D. Wang, T. Ma, R. Bai, D. Yu, Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical reflocculation, Water Res., 103 (2016) 170–181.
  17. Q. Ying, B.T. Khagendra, F.A.H. Andrew, Application of filtration aids for improving sludge dewatering properties–a review, Chem. Eng. J., 171 (2011) 373–384.
  18. L.Y. Jin, P. Zhang, G. Zhang, J. Li, Study of sludge moisture distribution and dewatering characteristic after cationic polyacrylamide (C-PAM) conditioning, Desal. Water Treat., 57 (2016) 29377–29383.
  19. M. Kuglarz, J. Bohdziewicz, L. Przywara, The influence of dual conditioning methods on sludge dewatering properties, Archit. Civ. Eng. Environ., 1 (2008) 103–106.
  20. M.Q. Niu, W.J. Zhang, D.S. Wang, Y. Chen, R.L. Chen, Correlation of physicochemical properties and sludge dewaterability under chemical conditioning using inorganic coagulants, Bioresour. Technol., 144 (2013) 337–343.
  21. W.J. Zhang, P. Xiao, Y.Y. Liu, S.W. Xu, F. Xiao, D.S. Wang, C.W.K. Chow, Understanding the impact of chemical conditioning with inorganic polymer flocculants on soluble extracellular polymeric substances in relation to the sludge dewaterability, Sep. Purif. Technol., 132 (2014) 430–437.
  22. H. Liu, J.K. Yang, N.R. Zhu, H. Zhang, Y. Li, S. He, C.Z. Yang, H. Yao, A comprehensive insight into the combined effects of Fenton’s reagent and skeleton builders on sludge deep dewatering performance, J. Hazard. Mater., 258 (2013) 144–150.
  23. M. Tokumura, M. Sekine, M. Yoshinari, H.T. Znad, Y. Kawase, Photo-Fenton process for excess sludge disintegration, Process Biochem., 42 (2007) 627–633.
  24. M. Kowalczyk, T. Kamizela, K. Parkitna, M. Milczarek, The use of Fenton reaction in sewage sludge technology, Scientific Book University of Zielona Góra, Environ. Eng., 141 (2011) 98–112.
  25. L.P. Wang, A.M. Li, Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: the dewatering performance and the characteristics of products, Water Res., 68 (2015) 291–303.
  26. W. Deng, J. Ma, J. Xiao, L. Wang, Y. Su, Orthogonal experimental study on hydrothermal treatment of municipal sewage sludge for mechanical dewatering followed by thermal drying, J. Cleaner Prod., 209 (2019) 236–249.
  27. B.A. MacDonald, K.D. Oakes, M. Adams, Molecular disruption through acid injection into waste activated sludge - a feasibility study to improve the economics of sludge dewatering, J. Cleaner Prod., 176 (2018) 966–975.
  28. C.X. Li, X.D. Wang, G.Y. Zhang, G.W. Yu, J.J. Lin, Y. Wang, Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: bench-scale research and pilot-scale verification, Water Res., 117 (2017) 49–57.
  29. Z. Chen, W.J. Zhang, D.S. Wang, T. Ma, R.Y. Bai, Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: kinetics of enzymatic reaction and re-flocculation morphology, Water Res., 83 (2015) 367–376.
  30. J.B. Liu, Y.S. Wei, K. Li, J. Tong, Y.W. Wang, R.L. Jia, Microwaveacid pretreatment: a potential process for enhancing sludge dewaterability, Water Res., 90 (2016) 225–234.
  31. M. Mobaraki, R.S. Semken, A. Mikkola, J. Pyrhonen, Enhanced sludge dewatering based on the application of high-power ultrasonic vibration, Ultrasonics, 84 (2018) 438–445.
  32. F.Q. Sun, K.K. Xiao, W.Y. Zhu, N. Withanage, Y. Zhou, Enhanced sludge solubilization and dewaterability by synergistic effects of nitrate and freezing, Water Res., 130 (2018) 208–214.
  33. A. Ding, F. Qu, S. Guo, Y. Ren, G. Xu, G. Li, Effect of adding wood chips on sewage sludge dewatering in a pilot-scale plateand- frame filter press process, RSC Adv., 4 (2014) 24762–24768.
  34. A. Bianchini, L. Bonfiglioli, M. Pellergini, C. Saccani, Sewage sludge management in Europe: a critical analysis of data quality, Int. J. Environ. Waste Manage., 18 (2016) 226–238.
  35. C. Chen, P. Zhang, G. Zeng, J. Deng, Y. Zhou, H. Lu, Sewage sludge conditioning with coal fly ash modified by sulphuric acid, Chem. Eng. J., 158 (2016) 616–622.
  36. Y.Q. Zhao, Enhancement of alum sludge dewatering capacity by using gypsum as skeleton builder, Colloids Surf., A, 211 (2002) 205–212.
  37. M. Wójcik, F. Stachowicz, Influence of physical, chemical and dual sewage sludge conditioning methods on the dewatering efficiency, Powder Technol., 344 (2019) 96–102.
  38. X. Yin, X.P. Lu, P.F. Han, Y.R. Wang, Ultrasonic treatment on activated sewage sludge from petro-plant for reduction, Ultrasonics, 44 (2006) 397–399.
  39. S. Na, Y.U. Kim, J. Khim, Physiochemical properties of digested sewage sludge with ultrasonic treatment, Ultrason. Sonochem., 14 (2007) 281–285.
  40. Y.U. Kim, B.I. Kim, Effect of ultrasound on dewaterability of sewage sludge, Jpn. J. Appl. Phys., Part 1, 42 (2003) 5898–5899.
  41. R. Dewil, J. Baeyens, R. Goutvrind, The use of ultrasonics in the treatment of waste activated sludge, J. Chem. Eng., 14 (2006) 105–113.
  42. F. Wang, Y. Wang, M. Ji, Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration, J. Hazard. Mater., 123 (2005) 145–150.
  43. http://www.old.kemipol.com.pl/img/pdf/karty_2009/20-1-KPIX_ 113-SIARCZAN_VI_ZELAZA_III_Xn.pdf (data 16.05.2019)
  44. http://www.technologie-sanitarne.com/Koagulant_zelazowy_ Pix_113_-3-205541-66_60_73.html
  45. https://pl.scribd.com/document/136007598/Chemicals-Zetag-DATA-Powder-Zetag-8180-0410
  46. https://www.btc-europe.com/fileadmin/user_upload/ Downloads/Pdf_s/Industries/Waste_Water_Treatment_EN_ April2016.pdf
  47. EN 14701-1:2006 – Characterisation of sludges - filtration properties - part 1: capillary suction time (CST).
  48. EN 14701-2:2013 – Characterisation of sludges - filtration properties - part 2: Determination of the specific resistance to filtration.
  49. B. Bień, The influence of the conditioning method on the quality of sludge liquid after the process of mechanical dewatering of sewage sludge, Proc. ECOpole, 11 (2017) 471–478.