References
- F.J. Stevenson, Humus Chemistry: Genesis, Composition,
Reactions, 2nd ed., John Wiley & Sons, Inc., New York, NY,
1994.
- E.A. Ghabbour, G. Davies, Humic Substances: Molecular
Details and Applications in Land and Water Conservation,
Taylor & Francis, Inc., New York, NY, 2005.
- I. Krupińska, Problems Associated with Humic Substances
in the Ground Water, Vol. 28, Scientific Papers No. 148, Ed.,
University of Zielona Góra, 2012, pp. 55–72 (in Polish).
- I.V. Perminova, F.H. Frimmel, A.V. Kudryavtsev, N.A. Kulikova,
G. Abbt-Braun, S. Hesse, A.S. Petrosyan, Molecular
weight characteristics of humic substances from different
environments as determined by size exclusion chromatography
and their statistical evaluation, Environ. Sci. Technol., 37 (2003)
2477–2485.
- B.A.G. de Melo, F.L. Motta, M.H.A. Santana, Humic acids:
structural properties and multiple functionalities for novel
technological developments, Mater. Sci. Eng., C, 62 (2016)
967–974.
- N.E. Palmer, R. von Wandruszka, Dynamic light scattering
measurements of particle size development in aqueous humic
materials, Fresenius J. Anal. Chem., 371 (2001) 951–954.
- S. Amir, M. Hafidi, L. Lemee, J.R. Bailly, G. Merlina,
M. Kaemmerer, J.C. Revel, A. Ambles, Structural characterization
of fulvic acids, extracted from sewage sludge during composting
by thermochemolysis–gas chromatography–mass
spectrometry, J. Anal. Appl. Pyrolysis, 77 (2006) 149–158.
- P.N. Linnik, Y.S. Ivanechko, R.P. Linnik, V.A. Zhezherya, Humic
substances in surface waters of the Ukraine, J. Water Chem.
Technol., 35 (2013) 295–304.
- Y. Iimura, T. Ohtani, S. Chersich, M. Tani, N. Fujitake,
Characterization of DAX‐8 adsorbed soil fulvic acid fractions
by various types of analyses, Soil Sci. Plant Nutr., 58 (2012)
404–415.
- I.V. Perminova, N.Y. Grechishcheva, D.V. Kovalevskii,
A.V. Kudryavtsev, V.S. Petrosyan, D.N. Matorin, Quantification
and prediction of the detoxifying properties of humic substances
related to their chemical binding to polycyclic aromatic
hydrocarbons, Environ. Sci. Technol., 35 (2001) 3841–3848.
- C. Plaza, V. Dorazio, N. Senesi, Copper(II) complexation of
humic acids from the first generation of EUROSOILS by total
luminescence spectroscopy, Geoderma, 125 (2005) 177–186.
- T. Chirenje, Leachability of Cu and Ni in wood ashamended soil
as impacted by humic and fulvic acid, Geoderma, 108 (2002)
31–47.
- M. Filella, J. Buffle, N. Parthasarathy, Humic and Fulvic
Compounds, P.J. Worsfold, A. Townshend, C.F. Poole, Eds.,
Encyclopedia of Analytical Science, 2nd ed., Elsevier, Oxford,
2005, pp. 288–298.
- D.C. Olk, P.R. Bloom, E.M. Perdue, Y. Chen, D.M. McKnight,
A. Farenhorst, N. Senesi, Y.P. Chin, P. Schmitt-Koplin,
N. Hertkorn, M. Harir, Environmental and agricultural
relevance of humic fractions extracted by alkali from soils and
natural waters, J. Environ. Qual., 48 (2019) 217–232.
- R.T. Lamar, D.C. Olk, L. Mayhew, P.R. Bloom, A new
standardized method for quantification of humic and fulvic
acids in humic ores and commercial products, J. AOAC Int.,
97 (2014) 721–730.
- Y. Chen, Organic Matter Reactions Involving Micronutrients
in Soils and Their Effect on Plants, A. Piccolo Ed., Humic
Substances in Terrestrial Ecosystems, Elsevier, Oxford, 1996,
pp. 507–529.
- A. Piccolo, S. Nardi, G. Concheri, Structural characteristics
of humic substances as related to nitrate uptake and growth
regulation in plant systems, Soil Biol. Biochem., 24 (1992)
373–380.
- L.P. Canellas, F.L. Olivares, N.O. Aguiar, D.L. Jones,
A. Nebbioso, P. Mazzei, A. Piccolo, Humic and fulvic acids as
biostimulants in horticulture, Sci. Hortic., 196 (2015) 15–27.
- O. Yakimenko, D. Khundzhua, A. Izosimov, V. Yuzhakov,
S. Patsaeva, Source indicator of commercial humic products:
UV-vis and fluorescence proxies, J Soils Sediments, 18 (2018)
1279–1291.
- M. Huculak-Mączka, J. Hoffmann, K. Hoffmann, Evaluation
of the possibilities of using humic acids obtained from lignite
in the production of commercial fertilizers, J. Soils Sediments,
18 (2018) 2868–2880.
- E. Aoustin, A.I. Schäfer, A.G. Fane, T.D. Waite, Ultrafiltration of
natural organic matter, Sep. Purif. Technol., 22–23 (2001) 63–78.
- M. Kitis, T. Karanfil, A. Wigton, J.E. Kilduff, Probing reactivity of
dissolved organic matter for disinfection by-product formation
using XAD-8 resin adsorption and ultrafiltration fractionation,
Water Res., 36 (2002) 3834–3848.
- D.T. Wigle, B.P. Lanphear, Human health risks from low-level
environmental exposures: no apparent safety thresholds, PLoS
Med., 12 (2005) 1232–1234.
- T.H. Boyer, P.C. Singer, Bench-scale testing of a magneticion
exchange resin for removal of disinfection by-product
precursors, Water Res., 39 (2005) 1265–1276.
- E.R. Cornelissen, N. Moreau, W.G. Siegers, A.J. Abrahamse,
L.C. Rietveld, A. Grefte, M. Dignum, G. Amy, L.P. Wessels,
Selection of anionic exchange resins for removal of natural
organic matter (NOM) fractions, Water Res., 42 (2008) 413–423.
- M. Fuentes, R. Baigorri, G. González-Gaitano, J.M. García-Mina,
New methodology to assess the quantity and quality of humic
substances in organic materials and commercial products
for agriculture, J. Soils Sediments, 18 (2018) 1389–1399.
- R.S. Swift, Part 3: Chemical Methods, D.L. Sparks, Ed., Methods
of Soil Analysis, Soil Science Society of America, Madison, 1996,
pp. 1018–1021.
- S.A. Waksman, S.A. Humus, Origin, Chemical Composition,
and Importance in Nature, Williams and Wilkins, Baltimore,
1936.
- J.C. Raposo, U. Villanueva, M. Olivares, J.M. Madariaga,
Determination of humic substances in sediments by focused
ultrasound extraction and ultraviolet visible spectroscopy,
Microchem. J., 128 (2016) 26–33.
- A. Moreda-Pineiro, A. Bermejo-Barrera, P. Bermejo-Barrera,
New trends involving the use of ultrasound energy for the
extraction of humic substances from marine sediments, Anal.
Chem. Acta, 524 (2004) 97–107.
- V. Romaris-Hortas, A. Moreda-Pineiro, P. Bermejo-Barrera,
Application of microwave energy to speed up the alkaline
extraction of humic and fulvic acids from marine sediments,
Anal. Chem. Acta, 602 (2007) 202–210.
- J.A. Leenheer, Comprehensive approach to preparative
isolation and fractionation of dissolved organic carbon from
natural waters and wastewaters, Environ. Sci. Technol., 15 (1981)
578–587.
- E.A. Thurman, R.L. Malcolm, Preparative isolation of
aquatic humic substances, Environ. Sci. Technol., 15 (1981)
463–566.
- G.R. Aiken, D.M. McKnight, K.A. Thorn, E.M. Thurman,
Isolation of hydrophilic organic acids from water using nonionic
macroporous resins, Org. Geochem., 18 (1992) 567–573.
- R.L. Malcolm, P. MacCarthy, Quantitative evaluation of XAD-8
and XAD-4 resins used in tandem for removing organic solutes
from water, Environ. Int., 18 (1992) 597–607.
- B. Bolto, G. Abbt-Braun, D. Dixon, R. Eldridge, F. Frimmel,
S. Hesse, S. King, M. Toifl, Experimental evaluation of cationic
polyelectrolytes for removing natural organic matter from
water, Water Sci. Technol., 40 (1999) 71–79.
- J. Peuravuori, K. Pihlaja, Multi-method characterization of lake
aquatic humic matter isolated with two different sorbing solids,
Anal. Chim. Acta, 363 (1998b) 235–247.
- T.F. Marhaba, Y. Pu, K. Bengraine, Modified dissolved organic
matter fractionation technique for natural water, J. Hazard.
Mater., 101 (2003) 43–53.
- G. Hua, D.A. Reckhow, Characterization of disinfection
byproduct precursors based on hydrophobicity and molecular
size, Environ. Sci. Technol., 41 (2007) 3309–3315.
- Polish Standard PN-89/G-97051.16, Brown Coal: Determination
of Toluene Extract (Bitumen) Yield, Resin Content in Extract,
and Humic Acid Content (in Polish).
- N. Lee, G. Amy, J.P. Croué, H. Buisson, Identification and
understanding of fouling in low-pressure membrane (MF/
UF) filtration by natural organic matter (NOM), Water Res.,
38 (2004) 4511–4523.
- P. Jarvis, B. Jefferson, J. Gregory, S.A. Parsons, A review of floc
strength and breakage, Water Res., 39 (2005) 3121–3137.
- M. Yan, D. Wang, J. Ni, J. Qu, W. Ni, J. Van Leeuwen, Natural
organic matter (NOM) removal in a typical North-China water
plant by enhanced coagulation: targets and techniques, Sep.Purif. Technol., 68 (2009) 320–327.
- T. Bond, O. Henriet, E.H. Goslan, S.A. Parsons, S.B. Jefferson,
Disinfection byproduct formation and fractionation behavior
of natural organic matter surrogates, Environ. Sci. Technol.,
43 (2009) 5982–5989.
- M. Giovanela, E. Parlanti, E.J. Soriano-Sierra, M.S. Soldi,
M.M.D. Sierra, Elemental compositions, FT-IR spectra and
thermal behaviour of sedimentary fulvic and humic acids from
aquatic and terrestrial environments, Geochem J., 38 (2004)
255–264.
- O. Purmalis, D. Porsnovs, M. Klavins, Differential thermal
analysis of peat and peat humic acids, Mater. Sci. Appl. Chem.,
24 (2011) 89–94.
- P. Boguta, Z. Sokołowska, K. Skic, Use of thermal analysis
coupled with differentia scanning calorimetry, quadrupole
mass spectrometry and infrared spectroscopy (TG-DSC-QMSFTIR)
to monitor chemical properties and thermal stability of
fulvic and humic acids, PLoS ONE, 12 (2017) e0189653.
- M. Klavins, L. Ansone, J. Tjutrins, I. Silamikele, O. Purmalis,
Differential Thermal Analysis of Peat and Peat Humic Acids
in Relation to Their Origin, M. Klavins, Ed., Mires and Peat,
University of Latvia Press, Riga, 2010, pp. 207–214.
- A. Iordanidisa, A. Georgakopoulosa, K. Markovab,
A. Filippidisa, A. Kassoli-Fournaraki, Application of TG-DTA to
the study of Amyntean lignites, northern Greece, Thermochim.
Acta, 371 (2001) 137–141.
- O. Francioso, D. Montecchio, P. Gioacchini, C. Ciavatta, Thermal
analysis (TG-DTA) and isotopic characterization (13C-15N) of
humic acids from different origins, Appl. Geochem., 20 (2005)
537–544.