References

  1. F.J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions, 2nd ed., John Wiley & Sons, Inc., New York, NY, 1994.
  2. E.A. Ghabbour, G. Davies, Humic Substances: Molecular Details and Applications in Land and Water Conservation, Taylor & Francis, Inc., New York, NY, 2005.
  3. I. Krupińska, Problems Associated with Humic Substances in the Ground Water, Vol. 28, Scientific Papers No. 148, Ed., University of Zielona Góra, 2012, pp. 55–72 (in Polish).
  4. I.V. Perminova, F.H. Frimmel, A.V. Kudryavtsev, N.A. Kulikova, G. Abbt-Braun, S. Hesse, A.S. Petrosyan, Molecular weight characteristics of humic substances from different environments as determined by size exclusion chromatography and their statistical evaluation, Environ. Sci. Technol., 37 (2003) 2477–2485.
  5. B.A.G. de Melo, F.L. Motta, M.H.A. Santana, Humic acids: structural properties and multiple functionalities for novel technological developments, Mater. Sci. Eng., C, 62 (2016) 967–974.
  6. N.E. Palmer, R. von Wandruszka, Dynamic light scattering measurements of particle size development in aqueous humic materials, Fresenius J. Anal. Chem., 371 (2001) 951–954.
  7. S. Amir, M. Hafidi, L. Lemee, J.R. Bailly, G. Merlina, M. Kaemmerer, J.C. Revel, A. Ambles, Structural characterization of fulvic acids, extracted from sewage sludge during composting by thermochemolysis–gas chromatography–mass spectrometry, J. Anal. Appl. Pyrolysis, 77 (2006) 149–158.
  8. P.N. Linnik, Y.S. Ivanechko, R.P. Linnik, V.A. Zhezherya, Humic substances in surface waters of the Ukraine, J. Water Chem. Technol., 35 (2013) 295–304.
  9. Y. Iimura, T. Ohtani, S. Chersich, M. Tani, N. Fujitake, Characterization of DAX‐8 adsorbed soil fulvic acid fractions by various types of analyses, Soil Sci. Plant Nutr., 58 (2012) 404–415.
  10. I.V. Perminova, N.Y. Grechishcheva, D.V. Kovalevskii, A.V. Kudryavtsev, V.S. Petrosyan, D.N. Matorin, Quantification and prediction of the detoxifying properties of humic substances related to their chemical binding to polycyclic aromatic hydrocarbons, Environ. Sci. Technol., 35 (2001) 3841–3848.
  11. C. Plaza, V. Dorazio, N. Senesi, Copper(II) complexation of humic acids from the first generation of EUROSOILS by total luminescence spectroscopy, Geoderma, 125 (2005) 177–186.
  12. T. Chirenje, Leachability of Cu and Ni in wood ashamended soil as impacted by humic and fulvic acid, Geoderma, 108 (2002) 31–47.
  13. M. Filella, J. Buffle, N. Parthasarathy, Humic and Fulvic Compounds, P.J. Worsfold, A. Townshend, C.F. Poole, Eds., Encyclopedia of Analytical Science, 2nd ed., Elsevier, Oxford, 2005, pp. 288–298.
  14. D.C. Olk, P.R. Bloom, E.M. Perdue, Y. Chen, D.M. McKnight, A. Farenhorst, N. Senesi, Y.P. Chin, P. Schmitt-Koplin, N. Hertkorn, M. Harir, Environmental and agricultural relevance of humic fractions extracted by alkali from soils and natural waters, J. Environ. Qual., 48 (2019) 217–232.
  15. R.T. Lamar, D.C. Olk, L. Mayhew, P.R. Bloom, A new standardized method for quantification of humic and fulvic acids in humic ores and commercial products, J. AOAC Int., 97 (2014) 721–730.
  16. Y. Chen, Organic Matter Reactions Involving Micronutrients in Soils and Their Effect on Plants, A. Piccolo Ed., Humic Substances in Terrestrial Ecosystems, Elsevier, Oxford, 1996, pp. 507–529.
  17. A. Piccolo, S. Nardi, G. Concheri, Structural characteristics of humic substances as related to nitrate uptake and growth regulation in plant systems, Soil Biol. Biochem., 24 (1992) 373–380.
  18. L.P. Canellas, F.L. Olivares, N.O. Aguiar, D.L. Jones, A. Nebbioso, P. Mazzei, A. Piccolo, Humic and fulvic acids as biostimulants in horticulture, Sci. Hortic., 196 (2015) 15–27.
  19. O. Yakimenko, D. Khundzhua, A. Izosimov, V. Yuzhakov, S. Patsaeva, Source indicator of commercial humic products: UV-vis and fluorescence proxies, J Soils Sediments, 18 (2018) 1279–1291.
  20. M. Huculak-Mączka, J. Hoffmann, K. Hoffmann, Evaluation of the possibilities of using humic acids obtained from lignite in the production of commercial fertilizers, J. Soils Sediments, 18 (2018) 2868–2880.
  21. E. Aoustin, A.I. Schäfer, A.G. Fane, T.D. Waite, Ultrafiltration of natural organic matter, Sep. Purif. Technol., 22–23 (2001) 63–78.
  22. M. Kitis, T. Karanfil, A. Wigton, J.E. Kilduff, Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation, Water Res., 36 (2002) 3834–3848.
  23. D.T. Wigle, B.P. Lanphear, Human health risks from low-level environmental exposures: no apparent safety thresholds, PLoS Med., 12 (2005) 1232–1234.
  24. T.H. Boyer, P.C. Singer, Bench-scale testing of a magneticion exchange resin for removal of disinfection by-product precursors, Water Res., 39 (2005) 1265–1276.
  25. E.R. Cornelissen, N. Moreau, W.G. Siegers, A.J. Abrahamse, L.C. Rietveld, A. Grefte, M. Dignum, G. Amy, L.P. Wessels, Selection of anionic exchange resins for removal of natural organic matter (NOM) fractions, Water Res., 42 (2008) 413–423.
  26. M. Fuentes, R. Baigorri, G. González-Gaitano, J.M. García-Mina, New methodology to assess the quantity and quality of humic substances in organic materials and commercial products for agriculture, J. Soils Sediments, 18 (2018) 1389–1399.
  27. R.S. Swift, Part 3: Chemical Methods, D.L. Sparks, Ed., Methods of Soil Analysis, Soil Science Society of America, Madison, 1996, pp. 1018–1021.
  28. S.A. Waksman, S.A. Humus, Origin, Chemical Composition, and Importance in Nature, Williams and Wilkins, Baltimore, 1936.
  29. J.C. Raposo, U. Villanueva, M. Olivares, J.M. Madariaga, Determination of humic substances in sediments by focused ultrasound extraction and ultraviolet visible spectroscopy, Microchem. J., 128 (2016) 26–33.
  30. A. Moreda-Pineiro, A. Bermejo-Barrera, P. Bermejo-Barrera, New trends involving the use of ultrasound energy for the extraction of humic substances from marine sediments, Anal. Chem. Acta, 524 (2004) 97–107.
  31. V. Romaris-Hortas, A. Moreda-Pineiro, P. Bermejo-Barrera, Application of microwave energy to speed up the alkaline extraction of humic and fulvic acids from marine sediments, Anal. Chem. Acta, 602 (2007) 202–210.
  32. J.A. Leenheer, Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters, Environ. Sci. Technol., 15 (1981) 578–587.
  33. E.A. Thurman, R.L. Malcolm, Preparative isolation of aquatic humic substances, Environ. Sci. Technol., 15 (1981) 463–566.
  34. G.R. Aiken, D.M. McKnight, K.A. Thorn, E.M. Thurman, Isolation of hydrophilic organic acids from water using nonionic macroporous resins, Org. Geochem., 18 (1992) 567–573.
  35. R.L. Malcolm, P. MacCarthy, Quantitative evaluation of XAD-8 and XAD-4 resins used in tandem for removing organic solutes from water, Environ. Int., 18 (1992) 597–607.
  36. B. Bolto, G. Abbt-Braun, D. Dixon, R. Eldridge, F. Frimmel, S. Hesse, S. King, M. Toifl, Experimental evaluation of cationic polyelectrolytes for removing natural organic matter from water, Water Sci. Technol., 40 (1999) 71–79.
  37. J. Peuravuori, K. Pihlaja, Multi-method characterization of lake aquatic humic matter isolated with two different sorbing solids, Anal. Chim. Acta, 363 (1998b) 235–247.
  38. T.F. Marhaba, Y. Pu, K. Bengraine, Modified dissolved organic matter fractionation technique for natural water, J. Hazard. Mater., 101 (2003) 43–53.
  39. G. Hua, D.A. Reckhow, Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size, Environ. Sci. Technol., 41 (2007) 3309–3315.
  40. Polish Standard PN-89/G-97051.16, Brown Coal: Determination of Toluene Extract (Bitumen) Yield, Resin Content in Extract, and Humic Acid Content (in Polish).
  41. N. Lee, G. Amy, J.P. Croué, H. Buisson, Identification and understanding of fouling in low-pressure membrane (MF/ UF) filtration by natural organic matter (NOM), Water Res., 38 (2004) 4511–4523.
  42. P. Jarvis, B. Jefferson, J. Gregory, S.A. Parsons, A review of floc strength and breakage, Water Res., 39 (2005) 3121–3137.
  43. M. Yan, D. Wang, J. Ni, J. Qu, W. Ni, J. Van Leeuwen, Natural organic matter (NOM) removal in a typical North-China water plant by enhanced coagulation: targets and techniques, Sep.Purif. Technol., 68 (2009) 320–327.
  44. T. Bond, O. Henriet, E.H. Goslan, S.A. Parsons, S.B. Jefferson, Disinfection byproduct formation and fractionation behavior of natural organic matter surrogates, Environ. Sci. Technol., 43 (2009) 5982–5989.
  45. M. Giovanela, E. Parlanti, E.J. Soriano-Sierra, M.S. Soldi, M.M.D. Sierra, Elemental compositions, FT-IR spectra and thermal behaviour of sedimentary fulvic and humic acids from aquatic and terrestrial environments, Geochem J., 38 (2004) 255–264.
  46. O. Purmalis, D. Porsnovs, M. Klavins, Differential thermal analysis of peat and peat humic acids, Mater. Sci. Appl. Chem., 24 (2011) 89–94.
  47. P. Boguta, Z. Sokołowska, K. Skic, Use of thermal analysis coupled with differentia scanning calorimetry, quadrupole mass spectrometry and infrared spectroscopy (TG-DSC-QMSFTIR) to monitor chemical properties and thermal stability of fulvic and humic acids, PLoS ONE, 12 (2017) e0189653.
  48. M. Klavins, L. Ansone, J. Tjutrins, I. Silamikele, O. Purmalis, Differential Thermal Analysis of Peat and Peat Humic Acids in Relation to Their Origin, M. Klavins, Ed., Mires and Peat, University of Latvia Press, Riga, 2010, pp. 207–214.
  49. A. Iordanidisa, A. Georgakopoulosa, K. Markovab, A. Filippidisa, A. Kassoli-Fournaraki, Application of TG-DTA to the study of Amyntean lignites, northern Greece, Thermochim. Acta, 371 (2001) 137–141.
  50. O. Francioso, D. Montecchio, P. Gioacchini, C. Ciavatta, Thermal analysis (TG-DTA) and isotopic characterization (13C-15N) of humic acids from different origins, Appl. Geochem., 20 (2005) 537–544.