References

  1. C.H. Zhou, Y. Ling, H.Y. Cao, Dewatering capability and morphological of municipal sludge, Zhongguo Huanjing Kexue/China, Environ. Sci., 33 (2013) 898–903.
  2. E. Zielewicz, Effects of ultrasonic disintegration of excess sewage sludge, Top. Curr. Chem., 374 (2016) 67.
  3. C.H. Zhou, Y. Ling, M. Zeng, X.Y. Li, Influence of microwave and ultrasound on sludge dewaterability, Adv. Mater. Res., 955–959 (2014) 2074–2079.
  4. G.J. Liu, L.W. Deng, Rheological properties of anaerobic sludge, Environ. Technol. Rev., 6 (2017) 199–208.
  5. C.H. Lee, J.C. Liu, Sludge dewaterability and floc structure in dual polymer conditioning, Adv. Environ. Res., 5 (2001) 129–136.
  6. E. Dieudé-Fauvel, S.K. Dentel, Sludge conditioning: impact of polymers on floc structure, J. Residuals Sci. Technol., 8 (2001) 101–108.
  7. B. Bień, J.D. Bień, Use of inorganic coagulants and polyelectrolytes to sonicated sewage sludge for improvement of sludge dewatering, Desal. Water Treat., 52 (2014) 3767–3774.
  8. Q. Guan, M. Tang, H. Zheng, H. Teng, X. Tang, Y. Liao, Investigation of sludge conditioning performance and mechanism by examining the effect of charge density on cationic polyacrylamide microstructure, Desal. Water Treat., 57 (2015) 12988–12997.
  9. W. Chen, H. Zheng, Q. Guan, H. Teng, C. Zhao, C. Zhao, Fabricating a flocculant with controllable cationic microblock structure: characterization and sludge conditioning behavior evaluation, Ind. Eng. Chem. Res., 55 (2016) 2892–2902.
  10. X. Feng, J. Deng, H. Lei, T. Bai, Q. Fan, Z. Li, Dewaterability of waste activated sludge with ultrasound conditioning, Bioresour. Technol., 100 (2009) 1074–1081.
  11. Ch. Zhu, P. Zhang, H. Wang, J. Ye, Conditioning of sewage sludge via combined ultrasonication-flocculation skeleton building to improve sludge dewaterability, Ultrason. Sonochem., 40 (2018) 353–360.
  12. Z. Meng, Z. Zhou, D. Zheng, L. Liu, J. Dong, Y. Yang, X. Li, T. Zhang, Optimizing dewaterability of drinking water treatment sludge by ultrasound treatment: correlations to sludge physicochemical properties, Ultrason. Sonochem., 45 (2018) 95–105.
  13. R. Błażejewski, Sedimentation of Solid Particles, The Basics of the Theory with Examples of Applications, Scientific Publisher PWN, Warszawa, 2015 (in Polish).
  14. J.M. Crowley, Clumping instability of a falling horizontal lattice, Phys. Fluids, 19 (1976) 1296–1300.
  15. H.Y. Chung, D.J. Lee, Porosity and interior structure of flocculated activated sludge floc, J. Colloid Interface Sci., 267 (2003) 136–143.
  16. M. Zieliński, M. Dębowski, M. Krzemieniewski, P. Rusanowska, M. Zielińska, A. Cydzik-Kwiatkowska, A. Głowacka-Gil, Application of an innovative ultrasound disintegrator for sewage sludge conditioning before methane fermentation, J. Ecol. Eng., 19 (2018) 240–247.
  17. M. Ruiz-Hernando, J. Labanda, J. Llorens, Dewaterability of sewage sludge by ultrasonic, thermal and chemical treatments, Chem. Eng. J., 230 (2013) 102–110.
  18. F. Markis, J.C. Baudez, R. Parthasarathy, P. Slatter, N. Eshtiaghi, Rheological characterisation of primary and secondary sludge: impact of solids concentration, Chem. Eng. J., 253 (2014) 526–537.
  19. L. Wolny, P. Wolski, I. Zawieja, Rheological parameters of dewatered sewage sludge after conditioning, Desalination, 222 (2008) 382–387.
  20. A. Śliwiński, Ultrasounds and their Applications, Scientific and Technical Publishing House, Warszawa, 2001, ISBN: 83-204- 1498-9 (in Polish).
  21. Standard PN-EN 14702–2:2008; Polish Committee for Standardization – Characterization of Sludges – Settling Properties – Part 2: Determination of Thicken Ability.