References
- B. Krajewska, Application of chitin- and chitosan-based materials
for enzyme immobilizations: a review. Enzyme Microb. Technol.
35 (2004) 126–139.
- C. Bullock, Immobilised enzymes. Sci. Progr., 78 (1995)119–134.
- J.M. Woodley, Immobilized biocatalysts. Solid Supports Catal.
Org. Synth., (1992) 254–271.
- F. van de Velde, N.D. Lourenço, H.M. Pinheiro and M. Bakker,
Carrageenan: a food-grade and biocompatible support for immobilisation techniques. Adv. Synth. Catal., 344 (2002) 815–835.
- http://www.lsbu.ac.uk/biology/enztech/sources.html#tab2_1.
- S.G. Burton, Development of bioreactors for application of biocatalysts in biotransformations and bioremediation. Pure Appl.
Chem., 73 (2001) 77–83.
- W.H. Scouten, J.H.T. Luong and R.S. Brown, Enzyme or protein
immobilization techniques for applications in biosensor design.
TIBTECH, 13 (1995) 178–185.
- W. Tischer and F. Wedekind, Immobilized enzymes: methods and
applications. Top Curr. Chem., 200 (1999) 95–126.
- L. Giorno and E. Drioli, Biocatalytic membrane reactors: applications and perspective. TIBTECH, 18 (2000) 339–348.
- E. Drioli and L. Giorno, Biocatalytic Membrane Reactors—Applications in Biotechnology and the Pharmaceutical Industry, T.J.
International, Padstow, UK, 1999, pp. 51–54.
- G. Carrea and S. Riva, Properties and synthetic applications of
enzymes in organic solvents. Angew. Chem. Int. Ed., 39 (2000)
2226–2254.
- M. Ulbricht and A. Papra, Polyacrylonitrile enzyme ultrafiltration
membranes prepared by adsorption, cross-linking, and covalent
binding. Enzyme Microb. Technol., 20 (1997) 61–68.
- V.M. Balcăo, A.L. Pavia and F.X. Malcata, Bioreactors with
immobilized lipase state of the art. Enzyme Microb. Technol., 18
(1996) 392–416.
- http://infosys.korea.ac.kr/ippage/e/ipdata/2004/02/file/e200402-1001.pdf.
- A.P.V. Goncalves, J.M. Lopes, F. Lemos, F.R. Ribeiro and D.M.F.
Prazeres, Effect of the immobilization support on the hydrolytic
activity of a cutinase from Fusarium solani pisi. Enzyme Microb.
Technol., 20 (1997) 93–101.
- D. Belhocine, H. Mokrane, H. Grib, H. Lounici, A. Pauss and
N. Mameri, Optimization of enzymatic hydrolysis of haemoglobin
in a continuous membrane bioreactor. Chem. Eng. J., 76 (2000)
189–196.
- E. Drioli and L. Giorno, Catalytic membrane reactors for bioconversion of low water soluble subtrate, in: Biocatalytic Membrane Reactors, Taylor Francis, 1999, pp. 153–187.
- K. Sakaki, L. Giorno and E. Erioli, Lipase-catalyzed optical
resolution of racemic naproxen in biphasic enzyme membrane
reactors. J. Membr. Sci., 184 (2001) 27–38.
- S.T. Bouwer, F.P. Cuperus and J.T.P. Derksen, The performance of
enzyme-membrane reactors with immobilized lipase. Enzyme
Microb. Technol., 21 (1997) 291–296.
- K. Sakaki, S. Hara and N. Itoh, Optical resolution of racemic
2-hydroxy octanoic acid using biphasic enzyme membrane reactor. Desalination, 149 (2002) 247–252.
- L. Giorno, N. Li and E. Drioli, Use of stable emulsion to improve
stability, activity, and enantioselectivity of lipase immobilized in
a membrane reactor. Biotechnol. Bioeng., 84 (2003) 677–685.
- L. Giorno, R. Molinari, E. Drioli, D. Bianchi and P. Cesti,
Performance of a biphasic organic/aqueous hollow fiber reactor
using immobilized lipase, J. Chem. Technol. Biotechnol. 64 (1995)
345–352.
- A. Gabelman and S.T. Hwang, Hollow fiber membrane contactors. J. Membr. Sci., 159 (1999) 61–106.
- M. Cheyran and M.A. Mehaia, in: Membrane Bioreactors,
Membrane Separation in Biotechnology, W.C. McGregor, ed.,
Marcel Dekker, New York, 1986, pp. 255–301.
- Q. Gan, F. Baykara, H. Rahmat and L.R. Weatherley, Analysis of
a direct contact membrane reactor for lipase catalysed oil hydrolysis in a dynamic emulsion system. Catal. Today, 56 (2000)
179–190.
- A. Mannheim and M. Cheyran, Continuous hydrolysis of milk
protein in a membrane reactor. J. Food Sci., 55 (1990) 381–390.
- M.M. Hoq, T.Yamane, S. Shimizu, T. Funda and S. Ishida, Continuous hydrolysis of olive oil by lipase in microporous hydrophobic membrane bioreactor. J. Am. Oil Chem. Soc., 62 (1985)
1016–1021.
- Y. Pouliot, S.F. Gauthier and C. Bard, Fractionation of casein
hydrolysates using polysulfone ultrafiltration hollow fiber membranes. J. Membr. Sci., 80 (1993) 257–264.
- S. Curcio, V. Calabro and G. Ioro, An experimental analysis of
membrane bioreactor performances with immobilized chymosin.
J. Membr. Sci., 173 (2000) 247–261.
- N. Cempel, J.M. Piot and D. Guillochon, Preparation of photodynamic hydrolysates from bovine haemoglobin. J. Agric. Food.
Chem., 42 (1994) 2059–2063.
- P. Bressollier, J.M. Petit and R. Julien, Enzyme hydrolysis of
plasma proteins in a CSTR ultrafiltration reactor: performance and
modeling. Biotechnol. Bioeng., 31 (1988) 650–658.
- H. Tanigaki, Hydrolysis of soybean oil by lipase with a bioreactor
having two different membranes. J. Ferment. Bioeng., 75 (1993)
53–57.
- L. Giorno, R. Molinari and E. Drioli, Experimental studies on
enzyme membrane reactors in oil treatment, in: Advances in Oils
and Fats, Antioxidants, and Oilsed By-products, Vol. 2, S.S.
Koseoglu, et al., ed., AOCS Press, Champaign, IL, 1998, pp. 91–94.
- L. Giorno, R. Molinari, M. Natoli and E. Drioli, Hydrolysis and
regioselective transesterification catalyzed by immobilized lipase
in membrane bioreactors. J. Membr. Sci., 125 (1997) 177–187.
- A. Bhardwaj, J. Lee, S. Glauner, S. Ganapathi, D. Bhattacharyya
and D.A. Butterfield, Biofunctional membranes: an EPR study of
active site structure and stability of papain non-covalently immobilized on the surface of modified poly (ether) sulfone membranes
through the avidin-biotin linkage. J. Membr. Sci., 119 (1996) 241–252.
- F.X. Yang, T.W. Weber, J.L. Gainer and G. Carta, Synthesis of
lovastatin with immobilized Candida rugosa lipase in organic
solvents: effects of reaction conditions on initial rates. Biotechnol.
Bioeng., 56 (1997) 671–680.
- L. Giorno, E. Drioli, G. Carvoli, A. Cassano and L. Donato, Study
of an enzyme membrane reactor with immobilized fumarase for
production of L-malic acid. Biotechnol. Bioeng., 72 (2001) 77–84.
- H.A. Sousa, C.A.M. Afonso, J.P.B. Mota and J.G. Crespo, Modelling the enantioselective hydrolysis of a meso-diester using pig
liver esterase in a two-phase hollow fibre reactor. Chem. Eng. Res.
Des., 83 (2005) 285–294.
- M. Goto, Enzymatic resolution of racemic ibuprofen by surfactantcoated lipases in organic media. Biotechnol. Lett., 18 (1996) 839–
844.
- S.C. Stinson, Chiral drug interactions. Chem. Eng. News, 77 (1999)
101.
- A.L. Demain, Small bugs, big business: The economic power of the
microbe. Biotechnol. Adv., 18 (2000) 499–514.
- M. Arroyo, I. De La Mata, C. Acebal and M.P. Castillon, Biotechnological applications of penicillin acylases: state-of-the-art.
Appl. Microbiol. Biot., 60 (2003) 507–514.
- C.J. Gray, J.S. Narang and S.A. Barker, Immobilization of lipase
from Candida cylindraceae and its use in the synthesis of menthol
esters by transesterification. Enzyme Microbiol. Technol., 12
(1990) 800–807.
- A. Mustranta, Use of lipase in the resolution of racemic ibuprofen.
Appl. Microbiol. Biotechnol., 38 (1992) 175–180.
- A. Wiseman, Designer enzyme and cell applications in industry
and in environmental monitoring. J. Chem. Tech. Biotechnol., 56
(1993) 3–13.
- G. Jönsson and L. Gorton, An amperometric glucose sensor made
by modification of a graphite electrode surface with immobilized
glucose oxidase and adsorbed mediator. Biosens., 1 (1985) 355–
368.
- M. Demura, T. Asakura and T. Kuroo, Immobilization of biocatalysts with Bombyx mori silk fibroin by several kinds of physical
treatment and its application to glucose sensors. Biosens., 4 (1989)
361–372.
- O. Fatibello-Filho, A. Suleiman and G.G. Guilbault, Enzyme electrode for the determination of aspartate. Biosens., 4 (1989) 313–
321.
- Y.A. Cho, H.S. Lee, G.S. Cha and Y.T. Lee, Fabrication of butyrylcholinesterase sensor using polyurethane-based ion-selective
membranes. Biosens. Bioelectron., 14 (1999) 435–438.
- D.C. Taek, A.J. Ran, K.K. Sun and C.K. Hee, Reproducible fabrication of miniaturized glucose sensors: preparation of sensing
membranes for continuous monitoring. Biosens. Bioelectron., 16
(2001) 1079–1087.
- X.H. Chen, Y.B. Hu and G.S. Wilson, Glucose microbiosensor
based on alumina sol–gel matrix/electropolymerized composite
membrane. Biosens. Bioelectron., 17 (2002) 1005–1013.
- X.F. Yang, Z.D. Zhou, D. Xiao and M.M.F. Choi, A fluorescent
glucose biosensor based on immobilized glucose oxidase on
bamboo inner shell membrane. Biosens. Bioelectron., 21 (2006)
1613–1620.
- A.K. Basu, P. Chattopadhyay, U. Roychudhuri and R. Chakraborty, A biosensor based on co-immobilized l-glutamate oxidase
and L-glutamate dehydrogenase for analysis of monosodium
glutamate in food. Biosens. Bioelectron., 21 (2006) 1968–1972.
- S.Q. Liu and Y.M. Sun, Co-immobilization of glucose oxidase and
hexokinase on silicate hybrid sol–gel membrane for glucose and
ATP detections. Biosens. Bioelectron., 22 (2007) 905–911.
- S. S. Ordóñez and E. Fàbregas, New antibodies immobilization
system into a graphite–polysulfone membrane for amperometric
immunosensors. Biosens. Bioelectron., 22 (2007) 965–972.
- I. Chibata, Immobilized aspartase-containing microbial cells.
Appl. Microbiol., 27 (1974) 878–885.
- M. Pastore and F. Morisi, Lactose reduction of milk by fiberentrapped $-galactosidase. Pilot-plant experiments. Methods.
Enzymol., 44 (1976) 822–830.
- E. Battistel, Enzyme resolution of (S)-(+)-naproxen in a continuous
reactor. Biotechnol. Bioeng., 38 (1991) 659–644.
- H. Moueddeb, J. Sanchez, C. Bardot, M. Fick and H. Moueddeb,
Membrane bioreactor for lactic acid production. J. Membr. Sci.,
114 (1996) 59–71.
- S. Ganapathi-Desai, D.A. Butterfield and D. Bhattacharyya, Flatsheet and hollow fiber membrane bioreactors: A study of the
kinetics and active site conformational changes of immobilized
papain including sorption studies of reaction constituents. J.
Chem. Technol. Biot., 64 (1995) 157–164.
- S. Ganapathi-Desai, D.A. Butterfield and D. Bhattacharyya,
Kinetics and active fraction determination of a protease enzyme
immobilized on functionalized membranes: Mathematical modeling and experimental results. Biotechnol. Prog., 14 (1998) 865–873.
- D.A. Butterfield, D. Bhattacharyya, S. Daunert and L. Bachas,
Catalytic biofunctional membranes containing site-specifically
immobilized enzyme arrays: a review. J. Membr. Sci., 181 (2001)
29–37.
- D.A. Butterfield, J. Lee, S. Ganapathi and D. Bhattacharyya,
Biofunctional membranes IV. Active site structure and stability of
an immobilized enzyme, papain, on modified polysulfone membranes studies by electron paramagnetic resonance and kinetics.
J. Membr. Sci., 91 (1994) 47–58.
- S. Ganapathi, D.A. Butterfield and D. Bhattacharyya, Flat sheet
and hollow fiber membrane bioreactors: a study of the kinetics
and active site conformational changes of immobilized papain
including sorption studies of reaction constituents. J. Chem.
Technol. Biotechnol., 64 (1995) 157–166.
- S. Ganapathi, D.A. Butterfield and D. Bhattacharyya, Kinetics and
active fraction determination of a protease enzyme immobilized
on functionalized membranes: mathematical modeling and
experimental results. Biotechnol. Prog., 14 (1998) 865–877.
- P. Zhuang and D.A. Butterfield, Optimization of covalently
coupling enzymes to polymeric membranes: EPR studies of
papain. J. Appl. Polym. Sci., 47 (1993) 1329–1338.
- P. Zhuang and D.A. Butterfield, Spin labeling and kinetic studies
of a membrane-immobilized proteolytic enzyme. Biotechnol.
Prog., 8 (1992) 204–219.
- P. Zhuang and D.A. Butterfield, Structural and enzymatic characterizations of papain immobilized onto vinyl alcohol/vinyl
butyral copolymer membrane. J. Membr. Sci., 66 (1992) 247–257.
- S. Vishwanath, J. Wang, L.G. Bachas, D.A. Butterfield and D.
Bhattacharyya, Site-directed and random immobilization of
subtilisin on functionalized membranes: activity determination in
aqueous and organic media. Biotech. Bioeng., 60 (1998) 608–616.
- Z.M. Liu, S. Tingry, C. Innocent, J. Durand, Z.K. Xu and P. Seta,
Modification of microfiltration polypropylene membranes by
allylamine plasma treatment-Influence of the attachment route on
peroxidase immobilization and enzyme efficiency. Enzyme
Microb. Technol., 39 (2006) 868–876.
- S. Vishwanath, D. Bhattacharyya, W. Huang and L.G. Bachas, Sitedirected and random enzyme immobilization on functionalized
membranes: kinetic studies and models. J. Membr. Sci., 108 (1995)
1–13.
- S.K. Vishwanath, C.R. Watson, W. Huang, L.G. Bachas and D.
Bhattacharyya, Kinetic studies of site-specifically and randomly
immobilized alkaline phosphatase on functionalized membranes.
J. Chem. Technol. Biotechnol., 68 (1997) 294–302.
- D.A. Butterfield, R. Subramaniam, D. Bhattacharyya, S. Viswanath, W. Huang and L. Bachas, Biofunctional membranes:
electron paramagnetic resonance studies of the active site
structure of enzymes site-specifically immobilized onto polymeric
supports through molecular recognition. Polym. Mat. Sci. Eng., 76
(1997) 602–603.
- W. Huang, J. Wang, D. Bhattacharyya and L.G. Bachas, Improved
enzymatic activity by site-specific immobilization of subtilisin.
Anal. Chem., 69 (1997) 4601–4607.
- H.K.W. Kallwass, W. Parris, E.L.A. McFarlane, M. Gold and J.B.
Jones, Site-specific immobilization of an L-lactate dehydrogenase
via an engineered surface cysteine residue. Biotechnol. Lett., 15
(1993) 29–44.
- S.J. Vigmond, M. Iwakura, F. Mizutani and T. Katsura, Sitespecific immobilization of molecularly engineered dihydrofolatereductase to gold surfaces. Langmuir, 10 (1994) 2860–2862.
- T.M. Spitznagel, J.W. Jacobs and D.S. Clark, Random and sitespecific immobilization of catalytic antibodies. Enzyme Microb.
Technol., 15 (1993) 916–921.
- E. Battistel, D. Bianchi, P. Cesti and C. Pina, Enzymatic resolution
of (S)-(+)-naproxen in a continuous reactor. Biotechnol. Bioeng. 38
(1991) 659-664.
- J.Y. Xin, S.B. Li, Y. Xu, J.R. Chui and C.G. Xia, Dynamic enzymatic
resolution of naproxen meyhyl ester in a membrane bioreactor.
J. Chem. Biotechnol., 76 (2001) 579–585.
- M.J. Costello, A.G. Fane, P.A. Hogan and R.W. Schofield, The
effect of shell-side hydrodynamics of axial flow hollow fibre
modules. J. Membr. Sci., 80 (1993) 1–11.
- A. Guerra, G. Jonsson, A. Rasmussen, E. Waagner Nielsen and
D. Edelsten, Low cross-flow velocity microfiltration of skim milk
for removal of bacterial spores. Int. Diary J., 7 (1997) 849–861.
- U. Cocchini, C. Nicolella and A.G. Livingston, Braided silicone
rubber membranes for organic extraction from aqueous solutions
I. Mass transport studies. J. Membr. Sci., 199 (2002) 85–99.
- J.L. Lopez and S.L. Matson, A multiphase/extractive enzyme
membrane reactor for production of diltiazem chiral intermediate.
J. Membr. Sci., 125 (1997) 189–211.
- A.G. Livingston, J.P. Arcangeli, A.T. Boam, S. Zhang, M. Marangon and L.M. dos Santos, Extractive membrane bioreactors for
detoxification of chemical industry wastes: process development.
J. Membr. Sci., 151 (1998) 29–44.
- C. Nicolella, P. Pavasant and A.G. Livingston, Substrate counter
diffusion and reaction in membrane-attached biofilms: mathematical analysis of rate limiting mechanisms. Chem. Eng. Sci., 55
(2000) 1385–1398.
- S.R. Wickramansinghe, M.J. Semmens and E.L. Cussler, Better
hollow fiber contactors. J. Membr. Sci., 62 (1991) 371–388.
- L.M. Freitas dos Santos and G. Lo Biundo, Treatment of pharmaceutical industry process wastewater using the extractive
membrane bioreactor. Environ. Prog., 18 (1999) 34–39.
- T.A.C. Oliveira, U. Cocchini, J.T. Scarpello and A.G. Livingston,
Pervaporation mass transfer with liquid flow in the transition
regime. J. Membr. Sci., 183 (2001) 119–133.
- V. Gekas amd B. Hallström, Mass transfer in the membrane
concentration polarisation layer under turbulent cross flow.
I. Critical literature review and adaptation of existing Sherwood
correlations to membrane operations. J. Membr. Sci., 30 (1987)
153–168.
- M.J. Costello, A.G. Fane, P.A. Hogan and R.W. Schofield, The
effect of shell-side hydrodynamics on the performance of axial
flow hollow fibre modules. J. Membr. Sci., 80 (1993) 1–15.
- M.G. Parvatiyar, Mass transfer in a membrane tube with
turbulent flow of Newtonian and non-Newtonian fluids. J.
Membr. Sci., 148 (1998) 45–57.
- R.M.C. Viegas, M. Rodríguez, S. Luque, J.R. Alvarez, I.M.
Coelhoso and J.P.S.G. Crespo, Mass transfer correlations in
membrane extraction: analysis of Wilson-plot methodology.
J. Membr. Sci., 145 (1998) 129–142.
- J. Wu and V. Chen, Shell-side mass transfer performance of
randomly packed hollow fibre models, J. Membr. Sci., 172 (2000)
59–74.
- R. Gawronski and B. Wrzesinska, Kinetics of solvent extraction
in hollow fibre contactors. J. Membr. Sci., 168 (2000) 213–222.
- F. Lipnizki and R.W. Field, Mass transfer performance for hollow
fibre modules with shell-side axial feed flow: using an
engineering approach to develop a framework. J. Membr. Sci.,
193 (2001) 195– 208.
- V. Calabrò, S. Curcio and G. Iorio, A theoretical analysis of transport phenomena in a hollow fiber membrane bioreactor with
immobilized biocatalyst. J. Membr. Sci., 206 (2002) 217–241.
- A.Trusek-Holownia and A. Noworyta, Mass transfer in the
membrane phase contactor with an enzyme gel layer
immobilized on a membrane. Desalination, 162 (2004) 335–342.
- T.W. Xu and R.Q. Fu, Determination of effective diffusion coefficient and interfacial mass transfer coefficient of bovine serum
albumin (BSA) adsorption into porous polyethylene membrane
by microscope FTIR-mapping study. Chem. Eng. Sci., 59 (2004)
4569– 4574.
- L. Giorno, J.C. Zhang and E. Drioli, Study of mass transfer
performance of naproxen acid and ester through a multiphase
enzyme-loaded membrane system. J. Membr. Sci., 276 (2006)
59–67.
- A. W. Mohammad, N. Ali. Understanding the steric and charge
contributions in NF membranes using increasing MWCO
polyamide membranes. Desalination 47(2002) 205-212.
- J. Drewes, M. Reinhard and P. Fox, Comparing microfiltrationreverse osmosis and soil-aquifer treatment for indirect potable
reuse. Water Res., 37 (2003) 3612–3621.
- B.B. Levine, K. Madrireddi, V. Lazarova, M.K. Stenstrom and
M. Suffet, Treatment of trace organic compounds by membrane
processes: at the lake arrowhead water reuse pilot plant. Water
Sci. Technol., 40 (1999) 293–302.
- H. Ozaki and H. Li, Rejection of organic compounds by ultra-low
pressure reverse osmosis membrane. Water Res., 36 (2002) 123–130.
- F. Bjorkling, S.E. Godtfredsen and O. Kirk, The future impact of
industrial lipases. TIBTECH, 9 (1991) 360–363.
- M. Rucka, B. Turkiewicz, S.J. Zuk, A. Krystynowicz and E. Galas,
Hydrolysis of plant oils by means of lipase from Rhizopus
nigricans. Bioprocess Eng., 7 (1991) 133–135.
- R. Molinari, M. E. Santoro and E. Drioli, Study and comparison
of two enzyme membrane reactors for fatty and glycerol production. EC Res., 33 (1994) 2591–2599.
- E. Ruckenstein and X. Wang, Lipase immobilized on hydrophobic porous polymer supports prepared by concentrated
emulsion polymerization and their activity in the hydrolysis of
triacylglycerides. Biotech. Bioeng., 42 (1993) 821–828.
- H. Stamatic, A. Xenakis, U. Menge and F.N. Kolisis, Kinetic
study of lipase catalyzed esterification reactions in water-in-oil
microemulsions. Biotech. Bioeng., 42 (1993) 931–937.
- B. Cambou and A.M. Klibanov, Comparison of different
strategies for the lipase-catalyzed preparative resolution of
racemic acids and alcohols: asymmetric hydrolysis, esterification, and transesterification. Biotech. Bioeng., 26 (1984) 1449–
1454.
- P.E. Sonnet, Enzymes for chiral synthesis. Chemtech., 18 (1998)
94–98.
- J.O. Rich, B.A. Bedell and J.S. Dordick,l Controlling enzymecatalyzed regioselectivity in sugar ester synthesis. Biotech.
Bioeng., 45 (1995) 426–434.
- Y. Miyake, M. Ohkubo and M. Teramoto, Lipase-catalyzed
hydrolysis of 2-naphtyl esters in biphasic system. Biotech.
Bioeng., 38 (1991) 30–36.
- R. Molinari, M.E. Santoro and E. Drioli, Study and comparison of
two enzyme membrane reactors for fatty acid and glycerol
production, Ind. Eng. Chem. Res., 33 (1994) 2591–2599.
- L. Giorno, R. Molinari, M. Natoli and E. Drioli, Hydrolysis and
regioselective transesterification catalyzed by immobilized
lipases in membrane bioreactor. J. Membr. Sci., 125 (1997) 177–187.
- R.P.M. Guit, M. Kloosterman, G. W. Meindersma, M. Mayer and
E.M. Meijer, Lipase kinetics: hydrolysis of triacetin by lipase
from candida cylindracea in a hollow-fiber membrane reactor.
Biotechnol. Bioeng., 38 (1991) 727–732.
- F. Carriere, K. Thirstup, E. Boel, R. Verger and L. Thim,
Structure-function relationships in naturally occurring mutants
of pancreatic lipase. Protein Eng., 7 (1994) 563–569.
- A.S. Michaels, Membranes, membrane processes, and their
applications: needs, unsolved problems, and challenges of the
1990’s. Desalination, 77 (1990) 5–34.
- M. Tanigaki, M. Sakata and H. Wada, Hydrolysis of soybean oil
by lipase with a bioreactor having two different membranes.
J. Ferm. Bioeng., 75 (1993) 53–57.
- L. Giorno, R. Molinari, E. Drioli, D. Bianchi and P. Cesti,
Performance of a biphasic organic/aqueous hollow fiber reactor
using immobilized lipase. J. Chem. Tech. Biotechnol., 64 (1995)
345–352.