References

  1. Y.Z. Peng, J.F. Gao, S.Y. Wang, M.H. Sui, Use of pH as fuzzy control parameter for nitrification under different alkalinity in SBR process, Water Sci. Technol., 47 (2003) 77–84.
  2. Y. Wang, H. Chen, Y.X. Liu, R.P. Ren, Y.K. Lv, Effect of temperature, salinity, heavy metals, ammonium concentration, pH and dissolved oxygen on ammonium removal by an aerobic nitrifier, RSC Adv, 5 (2015) 79988–79996.
  3. Z.Z. Zhang, Q.Q. Zhang, J.J. Xu, Z.J. Shi, Q. Guo, X.Y. Jiang, H.Z. Wang, G.H. Chen, R.C. Jin, Long-term effects of heavy metals and antibiotics on granule-based anammox process: granule property and performance evolution, Appl. Microbiol. Biotechnol., 100 (2016) 2417–2427.
  4. J. Gabarró, R. Ganigué, F. Gich, M. Ruscalleda, M.D. Balaguer, J. Colprim, Effect of temperature on AOB activity of a partial nitritation SBR treating landfill leachate with extremely high nitrogen concentration, Bioresour. Technol., 126 (2012) 283–289.
  5. Y. Wang, Y. Zhao, M. Ji, H. Zhai, Nitrification recovery behavior by bio-accelerators in copper-inhibited activated sludge system, Bioresour. Technol., 192 (2015) 748–755.
  6. R. Sierra-Alvarez, J. Hollingsworth, M.S. Zhou, Removal of copper in an integrated sulfate reducing bioreactor-crystallization reactor system, Environ. Sci. Technol., 41 (2007) 1426–1431.
  7. V. Stanković, D. Božić, M. Gorgievski, G. Bogdanović, Heavy metal ions adsorption from mine waters by sawdust, Chem. Ind. Chem. Eng. Q., 15 (2009) 251–256.
  8. A. Liu, J. Li, M. Li, X.Y. Niu, J. Wang, Toxicity assessment of binary metal mixtures (copper-zinc) to nitrification in soilless culture with the extended biotic ligand model, Arch. Environ. Contam. Toxicol., 72 (2017) 312–319.
  9. S. Aslan, O. Sozudogru, Individual and combined effects of nickel and copper on nitrification organisms, Ecol. Eng., 99 (2017) 126–133.
  10. V. Ochoa-Herrera, G. León, Q. Banihani, J.A. Field, R. Sierra- Alvarez, Toxicity of copper(II) ions to microorganisms in biological wastewater treatment systems, Sci. Total Environ., 412 (2011) 380–385.
  11. Y.W. Lee, Q. Tian, S.K. Ong, C. Sato, J. Chung, Inhibitory effects of copper on nitrifying bacteria in suspended and attached growth reactors, Water Air Soil Pollut., 203 (2009) 17–27.
  12. F. Çeçen, N. Semerci, A.G. Geyik, Inhibitory effects of Cu, Zn, Ni and Co on nitrification and relevance of speciation, J. Chem. Technol. Biotechnol, 85 (2010) 520–528.
  13. T.S. Radniecki, L. Semprini, M.E. Dolan, Expression of merA, amoA and hao in continuously cultured Nitrosomonas europaea cells exposed to zinc chloride additions, Biotechnol. Bioeng., 102 (2009) 546–553.
  14. P. Junier, V. Molina, C. Dorador, O. Hadas, O.S. Kim, T. Junier, K.P. Witzel, J.F. Imhoff, Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment, Appl. Microbiol. Biot., 85 (2010) 425-440.
  15. E.V. Lebedeva, M. Alawi, F. Maixner, P.G. Jozsa, H. Daims, E. Spieck, Physiological and phylogenetic characterization of a novel lithoautotrophic nitrite-oxidizing bacterium, ‘Candidatus nitrospira bockiana’, Int. J. Syst. Evol. Microbiol., 58 (2008) 242.
  16. S. Ehrich, D. Behrens, E. Lebedeva, W. Ludwig, E. Bock, A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship, Arch. Microbiol., 164 (1995) 16–23.
  17. J. Demanou, S. Sharma, A. Weber, B.M. Wilke, T. Njine, A. Monkiedje, J.C. Munch, M. Schloter, Shifts in microbial community functions and nitrifying communities as a result of combined application of copper and mefenoxam, FEMS Microbiol. Lett., 260 (2010) 55–62.
  18. J. Keshri, B.B. Mankazana, M.N. Momba, Profile of bacterial communities in South African mine-water samples using Illumina next-generation sequencing platform, Appl. Microbiol. Biotechnol., 99 (2015) 3233–3242.
  19. B. Mertoglu, N. Semerci, N. Guler, B. Calli, F. Cecen, A.M. Saatci, Monitoring of population shifts in an enriched nitrifying system under gradually increased cadmium loading, J. Hazard. Mater., 160 (2008) 495–501.
  20. F. Ouyang, M. Ji, H.Y. Zhai, Z. Dong, L. Ye, Dynamics of the diversity and structure of the overall and nitrifying microbial community in activated sludge along gradient copper exposures, Appl. Microbiol. Biotechnol., 100 (2016) 6881–6892.
  21. Y. Luo, Y. Liu, Q. Du, Q. Chen, Z. Cheng, The identification research of emergency treatment technology for sudden heavy metal pollution accidents in drainage basin based on D-S evidence theory, Water Sci. Technol., 80 (2019) 2392–2403.
  22. J.S. Song, M. Maeng, K. Lee, S.P. Pack, J.W. Lee, The role of extracellular polymeric substances in reducing copper inhibition to nitrification in activated sludge, Biotechnol. Bioprocess Eng., 21 (2016) 683–688.
  23. Z.Q. Hu, K. Chandran, D. Grasso, B.F. Smets, Impact of metal sorption and internalization on nitrification inhibition, Environ. Sci. Technol., 37 (2003) 728–734.
  24. Y. Lee, S. Ong, C. Sato, Effects of heavy metals on nitrifying bacteria, Water Sci. Technol., 89 (1997) 69–74.
  25. J. Surmacz-Gorska, K. Gernaey, C. Demuynck, P. Vanrolleghem, W. Verstraete, Nitrification monitoring in activated sludge by oxygen uptake rate (OUR) measurements, Water Res, 30 (1996) 1228–1236.
  26. T. Zhang, M. Zhang, X. Zhang, H.H. Fang, Tetracycline resistance genes and tetracycline resistant lactose-fermenting Enterobacteriaceae in activated sludge of sewage treatment plants, Environ. Sci. Technol., 43 (2009) 3455–3460.
  27. J.H. Rotthauwe, K.P. Witzel, W. Liesack, The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations, Appl. Environ. Microbiol., 63 (1998) 4704–4712.
  28. M.C. Schmid, A.B. Hooper, M.G. Klotz, D. Woebken, P. Lam, M.M. Kuypers, A. Pommerening-Roeser, H.J.M.O.D. Camp, M.S.M. Jetten, Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria, Environ. Microbiol., 10 (2010) 3140–3149.
  29. M.T. Suzuki, L.T. Taylor, E.F. Delong, Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5’-nuclease assays, Appl. Environ. Microbiol., 66 (2000) 4605–4614.
  30. G.A. Kowalchuk, J.R. Stephen, W.I.E.T.S.E. De Boer, J.I. Prosser, T.M. Embley, J.W. Woldendorp, Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments, Appl. Environ. Microbiol., 63 (1997) 1489–1497.
  31. G. Muyzer, E.C. de Waal, A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA, Appl. Environ. Microbiol., 59 (1993) 695–700.
  32. G. Chen, J. Huang, X. Tian, Q. Chu, Y. Zhao, H. Zhao, Effects of influent loads on performance and microbial community dynamics of aerobic granular sludge treating piggery wastewater, J. Chem. Technol. Biotechnol., 93 (2017) 1443–1452.
  33. APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association/ American Water Works Association/Water Environment Federation, Washington, 2005.
  34. M.T.S.D. Vasconcelos, M.F.C. Leal, Adsorption and uptake of Cu by Emiliania huxleyi in natural seawater, Environ. Sci. Technol., 35 (2001) 508–515.
  35. R. Liu, J. Kuang, Q. Gong, X. Hou, Principal component regression analysis with SPSS, Comput. Methods Programs Biomed., 71 (2003) 141–147.
  36. B. Ma, S. Wang, S. Cao, Y. Miao, F. Jia, R. Du, Y. Peng, Biological nitrogen removal from sewage via anammox: recent advances, Bioresour. Technol., 200 (2016) 981–990.
  37. N.C. Tan, M.J. Kampschreur, W. Wanders, W.L. van der Pol, J. van de Vossenberg, R. Kleerebezem, M.C. van Loosdrecht, M.S. Jetten, Physiological and phylogenetic study of an ammonium-oxidizing culture at high nitrite concentrations, Syst. Appl. Microbiol., 31 (2008) 114–125.
  38. L.Y. Stein, D.J. Arp, Loss of ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to nitrite, Appl. Environ. Microbiol., 64 (1998) 4098–4102.
  39. L.S. Cua, L.Y. Stein, Effects of nitrite on ammonia-oxidizing activity and gene regulation in three ammonia-oxidizing bacteria, FEMS Microbiol. Lett., 319 (2011) 169–175.
  40. T. Radniecki, R. Ely, Transcriptional and physiological responses of Nitrosococcus mobilis to copper exposure, J. Environ. Eng., 137 (2011) 307–314.
  41. E.M. Contreras, F. Ruiz, N.C. Bertola, Inhibition of the Respiration Rate of Ammonia Oxidizing Bacteria by Nitrite, https://www.researchgate.net/publication/228508754, 2014.
  42. D. Chang, K. Fukushi, S. Ghosh, Stimulation of activated sludge cultures for enhanced heavy metal removal, Water Environ. Res., 67 (1995) 822–827.
  43. D.H. Nies, Microbial heavy-metal resistance, Appl. Microbiol. Biotechnol., 51 (1999) 730–750.
  44. P.G. Campbell, A. Tessier, D. Turner, Metal Speciation and Bioavailability in Aquatic Systems, IUPAC Series on Analytical and Physical Chemistry of Environmental Systems, Wiley, Chichester, 1995.
  45. C.M. Saporito-Magriñá, R.N. Musacco-Sebio, G. Andrieux, L. Kook, M.T. Orrego, M.V. Tuttolomondo, M.F. Desimone, M. Boerries, C. Borner, M.G. Repetto, Copper-induced cell death and the protective role of glutathione: the implication of impaired protein folding rather than oxidative stress, Metallomics, 10 (2018) 1743–1754.
  46. T. Ajiboye, M. Aliyu, I. Isiaka, F. Haliru, O. Ibitoye, J. Uwazie, H. Muritala, S. Bello, I. Yusuf, A. Mohammed, Contribution of reactive oxygen species to (+)-catechin-mediated bacterial lethality, Chem. Biol. Interact., 258 (2016) 276–287.
  47. B. Das, S.K. Dash, D. Mandal, T. Ghosh, S. Chattopadhyay, S. Tripathy, S. Das, S.K. Dey, D. Das, S. Roy, Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage, Arabian J. Chem., 10 (2017) 862–876.
  48. J. Lawrence, G. Swerhone, J. Dynes, A. Hitchcock, D. Korber, Complex organic corona formation on carbon nanotubes reduces microbial toxicity by suppressing reactive oxygen species production, Environ. Sci. Nano, 3 (2016) 181–189.
  49. C. Gunawan, W.Y. Teoh, C.P. Marquis, R. Amal, Cytotoxic origin of copper (II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts, ACS nano, 5 (2011) 7214–7225.
  50. J. Li, X. Liu, Y. Liu, J. Ramsay, C. Yao, R. Dai, The effect of continuous exposure of copper on the properties and extracellular polymeric substances (EPS) of bulking activated sludge, Environ. Sci. Pollut. Res., 18 (2011) 1567–1573.
  51. Y. Wang, J. Qin, S. Zhou, X. Lin, L. Ye, C. Song, Y. Yan, Identification of the function of extracellular polymeric substances (EPS) in denitrifying phosphorus removal sludge in the presence of copper ion, Water Res., 73 (2015) 252–264.
  52. F. Ouyang, H.Y. Zhai, M. Ji, H.Y. Zhang, Z. Dong, Physiological and transcriptional responses of nitrifying bacteria exposed to copper in activated sludge, J. Hazard. Mater., 301 (2016) 172–178.
  53. P. Muller, H. Janovjak, A. Miserez, Z. Dobbie, Processing of gene expression data generated by quantitative real-time RT PCR, Biotechniques, 33 (2002) 514–514.
  54. A. Cydzik-Kwiatkowska, S. Ciesielski, I. Wojnowska-Baryła, Bacterial amoA and 16S rRNA genes expression in activated sludge during aeration phase in sequencing batch reactor, Pol. J. Nat. Sci., 22 (2007) 246–255.
  55. Y. Bai, Q. Sun, D. Wen, X. Tang, Abundance of ammoniaoxidizing bacteria and archaea in industrial and domestic wastewater treatment systems, FEMS Microbiol. Ecol., 80 (2012) 323–330.
  56. Q. Ma, Y. Qu, W. Shen, Z. Zhang, J. Wang, Z. Liu, D. Li, H. Li, J. Zhou, Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing, Bioresour. Technol., 179 (2015) 436–443.