References

  1. P.N.L. Lens, F. Omil, J.M. Lema, L.W. Hulshoff Pol, Biological Treatment of Organic Sulfate-Rich Wastewater, P.N.L. Lens, L.W. Hulshoff Pol, Eds., Environmnetal Technologies to Treat Sulfur Pollution: Principles and Engineering, IWA Publishing, London, 2000.
  2. H. Liu, R. Rmnarayanan, B.E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environ. Sci. Technol., 38 (2004) 2281–2285.
  3. H. Liu, S. Cheng, B.E. Logan, Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell, Environ. Sci. Technol., 39 (2005) 658–662.
  4. Z. Du, H. Li, T. Gu, A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy, Biotechnol. Adv., 25 (2007) 464–482.
  5. Z. He, S.D. Minteer, L.T. Angenent, Electricity generation from artificial wastewater using an upflow microbial fuel cell, Environ. Sci. Technol., 39 (2005) 5262–5267.
  6. B. Min, J.R. Kim, S.E. Oh, J.M. Regan, B.E. Logan, Electricity generation from swine wastewater using microbial fuel cells, Water Res., 39 (2005) 4961–4968.
  7. S.E. Oh, B.E. Logan, Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies, Water Res., 39 (2005) 4673–4682.
  8. K. Rabaey, P. Clauwaert, P. Aelterman, W. Verstraete, Tubular microbial fuel cells for efficient electricity generation, Environ. Sci. Technol., 39 (2005) 8077–8082.
  9. K. Rabaey, K. Van de sompel, L. Maignien, N. Boon, P. Aelterman, P. Clauwaert, H.T. Pham, J. Vermeulen, M. Verhaege, P. Lens, W. Verstraete, Microbial fuel cells for sulfide removal, Environ. Sci Technol., 40 (2006) 5218–5224.
  10. A. Sangcharoen, W. Niyom, B.B. Suwannasilp, A microbial fuel cell treating organic wastewater containing high sulfate under continuous operation: performance and microbial community, Process Biochem., 50 (2015) 1648–1655.
  11. W. Niyom, D. Komolyothin, B.B. Suwannasilp, Important role of abiotic sulfide oxidation in microbial fuel cells treating highsulfate wastewater, Eng. J., 22 (2018) 23–37.
  12. P.L. McCarty, J. Bae, J. Kim, Domestic wastewater treatment as a net energy producer – can this be achieved?, Environ. Sci., Technol., 45 (2011) 7100–7106.
  13. M. Sun, Z.H. Tong, G.P. Sheng, Y.Z. Chen, F. Zhang, Z.X. Mu, H.L. Wang, R.J. Zeng, X.W. Liu, H.Q. Yu, L. Wei, F. Ma, Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell, Biosens. Bioelectron., 26 (2010) 470–476.
  14. F. Zhao, N. Rahunen, J.R. Varcoe, A. Chandra, C. Avignone-Rossa, A.E. Thumser, R.C.T. Slade, Activated carbon cloth as anode for sulfate removal in a microbial fuel cell, Environ. Sci. Technol., 42 (2008) 4971–4976.
  15. N. Eaktasang, H.S. Min, C. Kang, H.S. Kim, Control of malodorous hydrogen sulfide compounds using microbial fuel cell, Bioprocess. Biosyst. Eng., 36 (2013) 1417–1425.
  16. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, 2005.
  17. ASTM, Annual Book of ASTM Standards, 1996, Pennsylvania, U.S.A., D4658–D4692.
  18. B. Boonchayaanant, P.K. Kitanidis, C.S. Criddle, Growth and cometabolic reduction kinetics of a uranium- and sulfatereducing Desulfovibrio/Clostridia mixed culture: temperature effects, Biotechnol. Bioeng., 99 (2008) 1107–1119.
  19. S.R. Forschner, R. Sheffer, D.C. Rowley, D.C. Smith, Microbial diversity in Cenozoic sediments recovered from the Lomonosov Ridge in the Central Arctic Basin, Environ. Microbiol., 11 (2009) 630–639.
  20. Y. Hu, Z. Jing, Y. Sudo, Q. Niu, J. Du, J. Wu, Y. Li, Effect of influent COD/SO42– ratios on UASB treatment of a synthetic sulfate-containing wastewater, Chemosphere, 130 (2015) 24–33.
  21. X. Lu, G. Zhen, J. Ni, T. Hojo, K. Kubota, Y. Li, Effecf of influent COD/SO42– ratios on biodegradation behaviors of starch wastewater in an upflow anaerobic sludge blanket (UASB) reactor, Bioresour. Technol., 214 (2016) 175–183.
  22. W. Habermann, E.H. Pommer, Biological fuel cells with sulphide storage capacity, Appl. Microbiol. Biotechnol., 35 (1991) 128–133.
  23. P.K. Dutta, K. Rabaey, Z. Yuan, J. Keller, Spontaneous electrochemical removal of aqueous sulfide, Water Res., 42 (2008) 4965–4975.
  24. L. Zhang, S. Zhou, L. Zhuang, W. Li, J. Zhang, N. Lu, L. Deng, Micorbial fuel cell based on Klebsiella pneumoniae biofilm, Electrochem. Commun., 10 (2008) 1641–1643.
  25. B.E. Logan, Exoelectrogenic bacteria that power microbial fuel cells, Nat. Rev. Microbiol., 7 (2009) 375–381.
  26. K.J. Chae, M.J. Choi, K.Y. Kim, F.F. Ajayi, W. Park, C.W. Kim, I.S. Kim, Methanogenesis control by employing vaious environmental stress conditions in two-chambered microbial fuel cells, Bioresour. Technol., 101 (2010) 5350–5357.
  27. S. Bagchi, M. Behera, Methanogenesis suppression in microbial fuel cell by aluminium dosing, Bioelectrochemistry, 129 (2019) 206–210.
  28. M.T. Madigan, J.M. Martinko, J. Parker, Brock Biology of Microorganisms, 10th ed., Pearson Education Inc., Upper Saddle River, NJ, 2003.
  29. L.W. Hulshoff Pol, P.N.L. Lens, J. Weijma, A.J.M. Stams, New developments in reactor and process technology for sulfate reduction, Water Sci. Technol., 44 (2001) 67–76.