References
- P.N.L. Lens, F. Omil, J.M. Lema, L.W. Hulshoff Pol, Biological
Treatment of Organic Sulfate-Rich Wastewater, P.N.L. Lens,
L.W. Hulshoff Pol, Eds., Environmnetal Technologies to Treat
Sulfur Pollution: Principles and Engineering, IWA Publishing,
London, 2000.
- H. Liu, R. Rmnarayanan, B.E. Logan, Production of electricity
during wastewater treatment using a single chamber microbial
fuel cell, Environ. Sci. Technol., 38 (2004) 2281–2285.
- H. Liu, S. Cheng, B.E. Logan, Production of electricity from
acetate or butyrate using a single-chamber microbial fuel cell,
Environ. Sci. Technol., 39 (2005) 658–662.
- Z. Du, H. Li, T. Gu, A state of the art review on microbial fuel
cells: a promising technology for wastewater treatment and
bioenergy, Biotechnol. Adv., 25 (2007) 464–482.
- Z. He, S.D. Minteer, L.T. Angenent, Electricity generation
from artificial wastewater using an upflow microbial fuel cell,
Environ. Sci. Technol., 39 (2005) 5262–5267.
- B. Min, J.R. Kim, S.E. Oh, J.M. Regan, B.E. Logan, Electricity
generation from swine wastewater using microbial fuel cells,
Water Res., 39 (2005) 4961–4968.
- S.E. Oh, B.E. Logan, Hydrogen and electricity production from
a food processing wastewater using fermentation and microbial
fuel cell technologies, Water Res., 39 (2005) 4673–4682.
- K. Rabaey, P. Clauwaert, P. Aelterman, W. Verstraete, Tubular
microbial fuel cells for efficient electricity generation, Environ.
Sci. Technol., 39 (2005) 8077–8082.
- K. Rabaey, K. Van de sompel, L. Maignien, N. Boon, P. Aelterman,
P. Clauwaert, H.T. Pham, J. Vermeulen, M. Verhaege, P. Lens,
W. Verstraete, Microbial fuel cells for sulfide removal, Environ.
Sci Technol., 40 (2006) 5218–5224.
- A. Sangcharoen, W. Niyom, B.B. Suwannasilp, A microbial fuel
cell treating organic wastewater containing high sulfate under
continuous operation: performance and microbial community,
Process Biochem., 50 (2015) 1648–1655.
- W. Niyom, D. Komolyothin, B.B. Suwannasilp, Important role
of abiotic sulfide oxidation in microbial fuel cells treating highsulfate
wastewater, Eng. J., 22 (2018) 23–37.
- P.L. McCarty, J. Bae, J. Kim, Domestic wastewater treatment as
a net energy producer – can this be achieved?, Environ. Sci.,
Technol., 45 (2011) 7100–7106.
- M. Sun, Z.H. Tong, G.P. Sheng, Y.Z. Chen, F. Zhang,
Z.X. Mu, H.L. Wang, R.J. Zeng, X.W. Liu, H.Q. Yu, L. Wei, F. Ma,
Microbial communities involved in electricity generation from
sulfide oxidation in a microbial fuel cell, Biosens. Bioelectron.,
26 (2010) 470–476.
- F. Zhao, N. Rahunen, J.R. Varcoe, A. Chandra, C. Avignone-Rossa, A.E. Thumser, R.C.T. Slade, Activated carbon cloth as
anode for sulfate removal in a microbial fuel cell, Environ. Sci.
Technol., 42 (2008) 4971–4976.
- N. Eaktasang, H.S. Min, C. Kang, H.S. Kim, Control of
malodorous hydrogen sulfide compounds using microbial fuel
cell, Bioprocess. Biosyst. Eng., 36 (2013) 1417–1425.
- APHA, AWWA, WEF, Standard Methods for the Examination
of Water and Wastewater, 21st ed., American Public Health
Association, American Water Works Association, Water
Environment Federation, Washington, DC, 2005.
- ASTM, Annual Book of ASTM Standards, 1996, Pennsylvania,
U.S.A., D4658–D4692.
- B. Boonchayaanant, P.K. Kitanidis, C.S. Criddle, Growth and
cometabolic reduction kinetics of a uranium- and sulfatereducing
Desulfovibrio/Clostridia mixed culture: temperature
effects, Biotechnol. Bioeng., 99 (2008) 1107–1119.
- S.R. Forschner, R. Sheffer, D.C. Rowley, D.C. Smith, Microbial
diversity in Cenozoic sediments recovered from the Lomonosov
Ridge in the Central Arctic Basin, Environ. Microbiol., 11 (2009)
630–639.
- Y. Hu, Z. Jing, Y. Sudo, Q. Niu, J. Du, J. Wu, Y. Li, Effect of
influent COD/SO42– ratios on UASB treatment of a synthetic
sulfate-containing wastewater, Chemosphere, 130 (2015) 24–33.
- X. Lu, G. Zhen, J. Ni, T. Hojo, K. Kubota, Y. Li, Effecf of influent
COD/SO42– ratios on biodegradation behaviors of starch wastewater
in an upflow anaerobic sludge blanket (UASB) reactor,
Bioresour. Technol., 214 (2016) 175–183.
- W. Habermann, E.H. Pommer, Biological fuel cells with sulphide
storage capacity, Appl. Microbiol. Biotechnol., 35 (1991) 128–133.
- P.K. Dutta, K. Rabaey, Z. Yuan, J. Keller, Spontaneous electrochemical
removal of aqueous sulfide, Water Res., 42 (2008)
4965–4975.
- L. Zhang, S. Zhou, L. Zhuang, W. Li, J. Zhang, N. Lu, L. Deng,
Micorbial fuel cell based on Klebsiella pneumoniae biofilm,
Electrochem. Commun., 10 (2008) 1641–1643.
- B.E. Logan, Exoelectrogenic bacteria that power microbial fuel
cells, Nat. Rev. Microbiol., 7 (2009) 375–381.
- K.J. Chae, M.J. Choi, K.Y. Kim, F.F. Ajayi, W. Park, C.W. Kim,
I.S. Kim, Methanogenesis control by employing vaious
environmental stress conditions in two-chambered microbial
fuel cells, Bioresour. Technol., 101 (2010) 5350–5357.
- S. Bagchi, M. Behera, Methanogenesis suppression in microbial
fuel cell by aluminium dosing, Bioelectrochemistry, 129 (2019)
206–210.
- M.T. Madigan, J.M. Martinko, J. Parker, Brock Biology of
Microorganisms, 10th ed., Pearson Education Inc., Upper
Saddle River, NJ, 2003.
- L.W. Hulshoff Pol, P.N.L. Lens, J. Weijma, A.J.M. Stams,
New developments in reactor and process technology for
sulfate reduction, Water Sci. Technol., 44 (2001) 67–76.