References

  1. C. Hudgins, R. McGlasson, P. Mehdlzadeh, W. Rosborough, Hydrogen sulfide cracking of carbon and alloy steels, Corrosion, 22 (1966) 238–251.
  2. K. Oiltools, Drilling Fluid Engineering Manual, Kuala-Lumpur, 2006, pp. 1–12.
  3. J. Lee, R. Kumar, Laboratory study of hydrogen sulfide removal in slug flows in a high pressure crude oil loop, J. Pet. Sci. Eng., 103 (2013) 72–79.
  4. L. Jiang, T.G.J. Jones, O.C. Mullins, X. Wu, Hydrogen Sulphide Detection Method and Apparatus, Google Patents, 2005.
  5. E. Brunner, W. Woll, Solubility of sulfur in hydrogen sulfide and sour gases, Soc. Pet. Eng. J., 20 (1980) 377–384.
  6. A.T. Onawole, I.A. Hussein, M.A. Saad, M. Mahmoud, M.E. Ahmed, H.I. Nimir, Effect of pH on acidic and basic chelating agents used in the removal of iron sulfide scales: a computational study, J. Pet. Sci. Eng., 178 (2019) 649–654.
  7. M.S. Kamal, I. Hussein, M. Mahmoud, A.S. Sultan, M.A. Saad, Oilfield scale formation and chemical removal: a review, J. Pet. Sci. Eng., 171 (2018) 127–139.
  8. M. Amosa, I. Mohammed, S. Yaro, O. Arinkoola, O. Ogunleye, Corrosion inhibition of oil well steel (N80) in simulated hydrogen sulphide environment by ferrous gluconate and synthetic magnetite, Nafta Zagreb, 61 (2010) 239–246.
  9. X. Wang, T. Sun, J. Yang, L. Zhao, J. Jia, Low-temperature H2S removal from gas streams with SBA-15 supported ZnO nanoparticles, Chem. Eng. J., 142 (2008) 48–55.
  10. O.A. Habeeb, R. Kanthasamy, G.A. Ali, R. Yunus, Low-cost and eco-friendly activated carbon from modified palm kernel shell for hydrogen sulfide removal from wastewater: adsorption and kinetic studies, Desal. Water Treat., 84 (2017) 205–214.
  11. O.A. Habeeb, R. Kanthasamy, G.A. Ali, S. Sethupathi, R.B.M. Yunus, Hydrogen sulfide emission sources, regulations, and removal techniques: a review, Rev. Chem. Eng., 34 (2018) 837–854.
  12. O.A. Habeeb, F.M. Yasin, U.A. Danhassan, Characterization and application of chicken eggshell as green adsorbents for removal of H2S from wastewaters, IOSR J. Environ. Sci. Toxicol. Food Technol., 8 (2014) 7–12.
  13. O.A. Habeeb, K. Ramesh, G.A. Ali, R. Yunus, T. Thanusha, O. Olalere, Modeling and optimization for H2S adsorption from wastewater using coconut shell based activated carbon, Aust. J. Basic Appl. Sci., 10 (2016) 136–147.
  14. O.A. Habeeb, R. Kanthasamy, G.A. Ali, R.M. Yunus, Application of response surface methodology for optimization of palm kernel shell activated carbon preparation factors for removal of H2S from industrial wastewater, J. Teknol., 79 (2017) 1–10.
  15. S.S.M. Ezzuldin, S.B.A. Rahim, H.W. Yussof, O.A. Olalere, O.A. Habeeb, Morphological, thermal stability and textural elucidation of raw and activated palm kernel shell and their potential use as environmental-friendly adsorbent, Chem. Data Collect., 21 (2019) 100235.
  16. O.A. Habeeb, R. Kanthasamy, S.E.M. Saber, O.A. Olalere, Characterization of agriculture wastes based activated carbon for removal of hydrogen sulfide from petroleum refinery waste water, Mater. Today: Proc., 20 (2020) 588–594.
  17. O.A, Habeeb, O.A. Olalere, R. Kanthasamy, B.V. Ayodele, Hydrogen sulfide removal from downstream wastewater using calcium-coated wood sawdust-based activated carbon, Arabian J. Sci. Eng., 45 (2020) 501–518.
  18. O.A. Habeeb, K. Ramesh, G.A.M. Ali, R.M. Yunus, Isothermal modelling based experimental study of dissolved hydrogen sulfide adsorption from waste water using eggshell based activated carbon, Malaysian J. Anal. Sci., 21 (2017) 334–345.
  19. O.A. Habeeb, K. Ramesh, G.A. Ali, R. Yunus, Experimental design technique on removal of hydrogen sulfide using CaO eggshells dispersed onto palm kernel shell activated carbon: experiment, optimization, equilibrium and kinetic studies, J. Wuhan Univ. Technol. Mater. Sci., 32 (2017) 305–332.
  20. A. Samuels, H2S Need Not Be Deadly, Dangerous, Destructive, SPE Symposium on Sour Gas and Crude, Society of Petroleum Engineers, Tyler, Texas, 1974.
  21. M. Sayyadnejad, H. Ghaffarian, M. Saeidi, Removal of hydrogen sulfide by zinc oxide nanoparticles in drilling fluid, Int. J. Environ. Sci. Technol., 5 (2008) 565–569.
  22. E. Vaiopoulou, P. Melidis, A. Aivasidis, Sulfide removal in wastewater from petrochemical industries by autotrophic denitrification, Water Res., 39 (2005) 4101–4109.
  23. G. Liu, Z.H. Huang, F. Kang, Preparation of ZnO/SiO2 gel composites and their performance of H2S removal at room temperature, J. Hazard. Mater., 215 (2012) 166–172.
  24. M. Jordan, K. Sjursaether, M. Edgerton, R. Bruce, Inhibition of Lead and Zinc Sulphide Scale Deposits Formed during Production from High Temperature Oil and Condensate Reservoirs, SPE Asia Pacific Oil and Gas Conference and Exhibition, Society of Petroleum Engineers, Brisbane, Australia, 2012.
  25. M.S. Morgani, R. Saboori, S. Sabbaghi, Hydrogen sulfide removal in water-based drilling fluid by metal oxide nanoparticle and ZnO/TiO2 nanocomposite, Mater. Res. Express, 4 (2017) 075501–075509, doi: 10.1088/2053-1591/aa707b.
  26. L. Yu, Q. Zhong, Preparation of adsorbents made from sewage sludges for adsorption of organic materials from wastewater, J. Hazard. Mater., 137 (2006) 359–366.
  27. H. Wang, X. Huang, W. Li, J. Gao, H. Xue, R.K. Li, Y.W. Mai, TiO2 nanoparticle decorated carbon nanofibers for removal of organic dyes, Colloids Surf., A, 549 (2018) 205–211.
  28. T.A. Saleh, M.N. Siddiqui, A.A. Al-Arfaj, Synthesis of multiwalled carbon nanotubes-titania nanomaterial for desulfurization of model fuel, J. Nanomater., 2014 (2014) 1–6.
  29. K.Y. Lee, A.R. Mohamed, K. Sato, Enhanced photocatalytic activity of TiO2-CNT composites for photoreduction of CO2, Sens. Mater., 27 (2015) 993–1001.
  30. L. Zeng, Z. Lu, M. Li, J. Yang, W. Song, D. Zeng, C. Xie, A modular calcination method to prepare modified N-doped TiO2 nanoparticle with high photocatalytic activity, Appl. Catal., B, 183 (2016) 308–316.
  31. L. Wang, J. Guo, J. Dang, X. Huang, S. Chen, W. Guan, Comparison of the photocatalytic performance of TiO2/AC and TiO2/CNT nanocomposites for methyl orange photodegradation, Water Sci. Technol., 78 (2018) 1082–1093.
  32. M. Nocuń, S. Kwaśny, M. Kwaśny, I. Grelowska, Spectroscopy studies of TiO2/carbon nanotubes nanocomposite layers synthesized by the sol–gel method, J. Mol. Struct., 1167 (2018) 194–199.
  33. S. Rosenzweig, G.A. Sorial, E. Sahle-Demessie, D.C. McAvoy, A.A. Hassan, Effect of chloride ions and water chemistry on copper(II) adsorption on functionalized and pristine carbon nanotubes compared to activated carbon F-400, Water Air Soil Pollut., 225 (2014) 1913–1929, doi: 10.1007/s11270-014-1913-1.
  34. M. Pacia, P. Warszyński, W. Macyk, UV and visible light active aqueous titanium dioxide colloids stabilized by surfactants, Dalton Trans., 43(2014) 12480–12485.
  35. S. Lagergren, About the theory of so-called adsorption of soluble substances, K. Sven. Vet. Hand., 24 (1898) 1–39.
  36. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  37. S.M.S, Arabi, R.S. Lalehloo, M.R.T.B. Olyai, G.A. Ali, H. Sadegh, Removal of Congo red azo dye from aqueous solution by ZnO nanoparticles loaded on multiwall carbon nanotubes, Physica E, 106 (2019) 150–155.
  38. V.K. Gupta, S. Agarwal, H. Sadegh, G.A. Ali, A.K. Bharti, A.S.H. Makhlouf, Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase, J. Mol. Liq., 237 (2017) 466–472.
  39. P.K. Gessner, M.M. Hasan, Freundlich and Langmuir isotherms as models for the adsorption of toxicants on activated charcoal, J. Pharm. Sci., 76 (1987) 319–327.
  40. E. Achife, J. Ibemesi, Applicability of the Freundlich and Langmuir adsorption isotherms in the bleaching of rubber and melon seed oils, J. Am. Oil Chem. Soc., 66 (1989) 247–252.
  41. S. Agarwal, H. Sadegh, M. Monajjemi, A.S. Hamdy, G.A. Ali, A.O. Memar, R. Shahryari-Ghoshekandi, I. Tyagi, V.K. Gupta, Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol, J. Mol. Liq., 218 (2016) 191–197.
  42. O.A. Habeeb, K. Ramesh, G.A. Ali, R. Yunus, O. Olalere, Kinetic, isotherm and equilibrium study of adsorption capacity of hydrogen sulfide-wastewater system using modified eggshells, IIUM Eng. J., 18 (2017) 13–25.
  43. P. Dhage, A. Samokhvalov, D. Repala, E.C. Duin, M. Bowman, B.J. Tatarchuk, Copper-promoted ZnO/SiO2 regenerable sorbents for the room temperature removal of H2S from reformate gas streams, Ind. Eng. Chem. Res., 49 (2010) 8388–8396.
  44. B. Elyassi, Y.A. Wahedi, N. Rajabbeigi, P. Kumar, J.S. Jeong, X. Zhang, P. Kumar, V.V. Balasubramanian, M.S. Katsiotis, K.A. Mkhoyan, N. Boukos, S.A. Hashimi, M. Tsapatsis, A high-performance adsorbent for hydrogen sulfide removal, Microporous Mesoporous Mater., 190 (2014) 152–155.
  45. C. Fauteux-Lefebvre, N. Abatzoglou, N. Braidy, Y. Hu, Carbon nanofilaments functionalized with iron oxide nanoparticles for in-depth hydrogen sulfide adsorption, Ind. Eng. Chem. Res., 54 (2015) 9230–9237.
  46. C. Yang, S. Yang, H. Fan, Y. Wang, J. Shangguan, Tuning the ZnOactivated carbon interaction through nitrogen modification for enhancing the H2S removal capacity, J. Colloid Interface Sci., 555 (2019) 548–557.