References

  1. A. Sharif, S.A. Raza, I. Ozturk, S. Afshan, The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: a global study with the application of heterogeneous panel estimations, Renewable Energy 133 (2019) 685–691.
  2. H.A. Rypkema, Chapter 2.1 - Environmental chemistry, renewable energy, and global policy, Green Chem. (2018) 19–47, doi: 10.1016/B978-0-12-809270-5.00002-9.
  3. Y. Tian, C.Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications, Appl. Energy, 104 (2013) 538–553.
  4. F. Jalili Jamshidian, S. Gorjian, M. Shafiee Far, An overview of solar thermal power generation systems, J. Sol. Energy Res., 3 (2018) 301–312.
  5. O.A. Jaramillo, M. Borunda, K.M. Velazquez-Lucho, M. Robles, Parabolic trough solar collector for low enthalpy processes: an analysis of the efficiency enhancement by using twisted tape inserts, Renewable Energy, 93 (2016) 125–141.
  6. V.K. Jebasingh, G.M. Joselin Herbert, A review of solar parabolic trough collector, Renewable Sustainable Energy Rev., 54 (2016) 1085–1091.
  7. T. Alam, M.H. Kim, A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications, Renewable Sustainable Energy Rev., 81 (2018) 813–839.
  8. W.T. Ji, A.M. Jacobi, Y.L. He, W.Q. Tao, Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipe flow, Int. J. Heat Mass Transfer, 88 (2015) 735–754.
  9. W.T. Ji, A.M. Jacobi, Y.L. He, W.Q. Tao, Summary and evaluation on the heat transfer enhancement techniques of gas laminar and turbulent pipe flow, Int. J. Heat Mass Transfer, 111 (2017) 467–483.
  10. K. Bilen, M. Cetin, H. Gul, T. Balta, The investigation of groove geometry effect on heat transfer for internally grooved tubes, Appl. Therm. Eng., 29 (2009) 753–761.
  11. A.H. Elsheikh, S.W. Sharshir, M.A. Elaziz, A.E. Kabeel, W. Guilan, Z. Haiou, Modeling of solar energy systems using artificial neural network: a comprehensive review, Sol. Energy, 180 (2019) 622–639.
  12. E. Arce-Medina, J.I. Paz-Paredes, Artificial neural network modeling techniques applied to the hydrodesulfurization process, Math. Comput. Modell., 49 (2009) 207–214.
  13. S.A. Kalogirou, Artificial neural networks in renewable energy systems applications: a review, Renewable Sustainable Energy Rev., 5 (2001) 373–401.
  14. S.A. Kalogirou, Prediction of flat-plate collector performance parameters using artificial neural networks, Sol. Energy, 80 (2006) 248–259.
  15. A. Sözen, T. Menlik, S. Ünvar, Determination of efficiency of flat-plate solar collectors using neural network approach, Expert Syst. Appl., 35 (2008) 1533–1539.
  16. M. Caner, E. Gedik, A. Keçebaş, Investigation on thermal performance calculation of two type solar air collectors using artificial neural network, Expert Syst. Appl., 38 (2011) 1668–1674.
  17. S.Y. Heng, Y. Asako, T. Suwa, K. Nagasaka, Transient thermal prediction methodology for parabolic trough solar collector tube using artificial neural network, Renewable Energy, 131 (2019) 168–179.
  18. E.D. Reyes-Téllez, R.A. Conde-Gutiérrez, J.A. Hernández, E. Cardoso, S. Silva-Martínez, F. Z. Sierra, O. Cortés-Aburto, Optimal operating condition for a type W parabolic trough collector with low-cost components using inverse neural network and solved by genetic algorithm, Desal. Water Treat., 73 (2017) 80–89.
  19. O. May Tzuc, A. Bassam, M.A. Escalante-Soberanis, E. Venegas-Reyes, O.A. Jaramillo, L.J. Ricalde, E. Ordoñez, Y. El Hamzaoui, Modeling and optimization of a solar parabolic trough concentrator system using inverse artificial neural network, J. Renewable Sustainable Energy, 9 (2017) 013701-1–15, doi: 10.1063/1.4974778.
  20. Centro de Investigación en Ingeniería y Ciencias Aplicadas. Available at: http://www2.ciicap.uaem.mx/
  21. National Meteorological Service. Available at: https://smn.cna. gob.mx/ (query on October and November 2016).
  22. A. Parrales, D. Colorado, J.A. Díaz-Gómez, A. Huicochea, A. Álvarez, J.A. Hernández, New void fraction equations for two-phase flow in helical heat exchangers using artificial neural networks, Appl. Therm. Eng., 130 (2018) 149–160.
  23. M. Khayet, C. Cojocaru, Artificial neural network modeling and optimization of desalination by air gap membrane distillation, Sep. Purif. Technol., 86 (2012) 171–182.
  24. A.R. Khataee, M.B. Kasiri, Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis, J. Mol. Catal. A: Chem., 331 (2010) 86–100.
  25. O.I. Abiodun, A. Jantan, A.E. Omolara, K.V. Dada, N.A. Mohamed, H. Arshad, State-of-the-art in artificial neural network applications: a survey, Heliyon, 4 (2018), doi: 10.1016/j. heliyon.2018.e00938.
  26. E. Martínez-Martínez, B.A. Escobedo-Trujillo, D. Colorado, L.I. Morales, A. Huicochea, J.A. Hernández, J. Siqueiros, Criteria for improving the traditional artificial neural network methodology applied to predict COP for a heat transformer, Desal. Water Treat., 73 (2017) 90–100.
  27. D.E. Millán-Ocampo, A. Parrales-Bahena, J.G. González-Rodríguez, S. Silva-Martínez, J. Porcayo-Calderón, J.A. Hernández-Pérez, Modelling of behavior for inhibition corrosion of bronze using artificial neural network (ANN), Entropy, 20 (2018) 409.
  28. J. Han, M. Kamber, J. Pei, Data Mining Concepts and Techniques, 3rd ed., Morgan Kaufmann Publishers 225 Wyman Street, Waltham, MA 02451, USA, 2012.
  29. A. Bassam, R.A. Conde-Gutierrez, J. Castillo, G. Laredo, J.A. Hernandez, Direct neural network modeling for separation of linear and branched paraffins by adsorption process for gasoline octane number improvement, Fuel, 124 (2014) 158–167.
  30. C.I. Rocabruno-Valdés, L.F. Ramírez-Verduzco, J.A. Hernández, Artificial neural network models to predict density, dynamic viscosity, and cetane number of biodiesel, Fuel, 147 (2015) 9–17.
  31. M. Mohanraj, S. Jayaraj, C. Muraleedharan, Applications of artificial neural networks for thermal analysis of heat exchangers - a review, Int. J. Therm. Sci., 90 (2015) 150–172.
  32. H.K. Ghritlahre, R.K. Prasad, Application of ANN technique to predict the performance of solar collector systems - a review, Renewable Sustainable Energy Rev., 84 (2018) 75–88.
  33. S.P. Verma, Estadística Básica para el Manejo de Datos Experimentales: Aplicación en la Geoquímica (Geoquimiometría), Universidad Nacional Autónoma de México, México Distrito Federal, 2005.
  34. S.P. Verma, R. Cruz-Huicochea, Alternative approach for precise and accurate Student´s t critical values and application in geosciences, J. Iberian Geol., 39 (2013) 31–56.
  35. J.A. Rodríguez, Y. El Hamzaoui, J.A. Hernández, J.C. García, J.E. Flores, A.L. Tejeda, The use of artificial neural network (ANN) for modeling the useful life of the failure assessment in blades of steam turbines, Eng. Fail. Anal., 35 (2013) 562–575.
  36. C.I. Rocabruno-Valdés, J.G. González-Rodriguez, Y. Díaz-Blanco, A.U. Juantorena, J.A. Muñoz-Ledo, Y. El-Hamzaoui, J.A. Hernández, Corrosion rate prediction for metals in biodiesel using artificial neural networks, Renewable Energy, 140 (2019) 592–601.
  37. A. Parrales, J.A. Hernández-Pérez, O. Flores, H. Hernandez, J.F. Gómez-Aguilar, R. Escobar-Jiménez, A. Huicochea, Heat transfer coefficients analysis in a helical double-pipe evaporator: nusselt number correlations through artificial neural networks, Entropy, 21 (2019) 689.
  38. J.A. Hernández, D. Colorado, Uncertainty analysis of COP prediction in a water purification system integrated into a heat transformer using several artificial neural networks, Desal. Water Treat., 51 (2013) 1443–1456.
  39. A. Mehta, A. Rawat, P. Chauhan, Advances in Electric Power and Energy Infrastructure, Proceedings of ICPCCI 2019, Vol. 608, Lecture Notes in Electrical Engineering (LNEE), 2020, p. 264.
  40. L.I. Morales, R.A. Conde-Gutierrez, J.A. Hernandez, A. Huicochea, D. Juarez-Romero, J. Siqueiros, Optimization of an absorption heat transformer with two-duplex components using inverse neural network and solved by genetic algorithm, Appl. Therm. Eng., 85 (2015) 322–333.