References
- A. Sharif, S.A. Raza, I. Ozturk, S. Afshan, The dynamic
relationship of renewable and nonrenewable energy consumption
with carbon emission: a global study with the
application of heterogeneous panel estimations, Renewable
Energy 133 (2019) 685–691.
- H.A. Rypkema, Chapter 2.1 - Environmental chemistry,
renewable energy, and global policy, Green Chem. (2018) 19–47,
doi: 10.1016/B978-0-12-809270-5.00002-9.
- Y. Tian, C.Y. Zhao, A review of solar collectors and thermal
energy storage in solar thermal applications, Appl. Energy, 104
(2013) 538–553.
- F. Jalili Jamshidian, S. Gorjian, M. Shafiee Far, An overview of
solar thermal power generation systems, J. Sol. Energy Res.,
3 (2018) 301–312.
- O.A. Jaramillo, M. Borunda, K.M. Velazquez-Lucho, M. Robles,
Parabolic trough solar collector for low enthalpy processes: an
analysis of the efficiency enhancement by using twisted tape
inserts, Renewable Energy, 93 (2016) 125–141.
- V.K. Jebasingh, G.M. Joselin Herbert, A review of solar parabolic
trough collector, Renewable Sustainable Energy Rev., 54 (2016)
1085–1091.
- T. Alam, M.H. Kim, A comprehensive review on single phase
heat transfer enhancement techniques in heat exchanger
applications, Renewable Sustainable Energy Rev., 81 (2018)
813–839.
- W.T. Ji, A.M. Jacobi, Y.L. He, W.Q. Tao, Summary and evaluation
on single-phase heat transfer enhancement techniques of liquid
laminar and turbulent pipe flow, Int. J. Heat Mass Transfer,
88 (2015) 735–754.
- W.T. Ji, A.M. Jacobi, Y.L. He, W.Q. Tao, Summary and evaluation
on the heat transfer enhancement techniques of gas laminar
and turbulent pipe flow, Int. J. Heat Mass Transfer, 111 (2017)
467–483.
- K. Bilen, M. Cetin, H. Gul, T. Balta, The investigation of groove
geometry effect on heat transfer for internally grooved tubes,
Appl. Therm. Eng., 29 (2009) 753–761.
- A.H. Elsheikh, S.W. Sharshir, M.A. Elaziz, A.E. Kabeel,
W. Guilan, Z. Haiou, Modeling of solar energy systems using
artificial neural network: a comprehensive review, Sol. Energy,
180 (2019) 622–639.
- E. Arce-Medina, J.I. Paz-Paredes, Artificial neural network
modeling techniques applied to the hydrodesulfurization
process, Math. Comput. Modell., 49 (2009) 207–214.
- S.A. Kalogirou, Artificial neural networks in renewable energy
systems applications: a review, Renewable Sustainable Energy
Rev., 5 (2001) 373–401.
- S.A. Kalogirou, Prediction of flat-plate collector performance
parameters using artificial neural networks, Sol. Energy,
80 (2006) 248–259.
- A. Sözen, T. Menlik, S. Ünvar, Determination of efficiency of
flat-plate solar collectors using neural network approach,
Expert Syst. Appl., 35 (2008) 1533–1539.
- M. Caner, E. Gedik, A. Keçebaş, Investigation on thermal
performance calculation of two type solar air collectors
using artificial neural network, Expert Syst. Appl., 38 (2011)
1668–1674.
- S.Y. Heng, Y. Asako, T. Suwa, K. Nagasaka, Transient thermal
prediction methodology for parabolic trough solar collector
tube using artificial neural network, Renewable Energy, 131
(2019) 168–179.
- E.D. Reyes-Téllez, R.A. Conde-Gutiérrez, J.A. Hernández,
E. Cardoso, S. Silva-Martínez, F. Z. Sierra, O. Cortés-Aburto,
Optimal operating condition for a type W parabolic trough
collector with low-cost components using inverse neural
network and solved by genetic algorithm, Desal. Water Treat.,
73 (2017) 80–89.
- O. May Tzuc, A. Bassam, M.A. Escalante-Soberanis, E. Venegas-Reyes, O.A. Jaramillo, L.J. Ricalde, E. Ordoñez, Y. El Hamzaoui,
Modeling and optimization of a solar parabolic trough
concentrator system using inverse artificial neural network,
J. Renewable Sustainable Energy, 9 (2017) 013701-1–15, doi:
10.1063/1.4974778.
- Centro de Investigación en Ingeniería y Ciencias Aplicadas.
Available at: http://www2.ciicap.uaem.mx/
- National Meteorological Service. Available at: https://smn.cna.
gob.mx/ (query on October and November 2016).
- A. Parrales, D. Colorado, J.A. Díaz-Gómez, A. Huicochea,
A. Álvarez, J.A. Hernández, New void fraction equations for
two-phase flow in helical heat exchangers using artificial neural
networks, Appl. Therm. Eng., 130 (2018) 149–160.
- M. Khayet, C. Cojocaru, Artificial neural network modeling
and optimization of desalination by air gap membrane
distillation, Sep. Purif. Technol., 86 (2012) 171–182.
- A.R. Khataee, M.B. Kasiri, Artificial neural networks modeling
of contaminated water treatment processes by homogeneous
and heterogeneous nanocatalysis, J. Mol. Catal. A: Chem., 331
(2010) 86–100.
- O.I. Abiodun, A. Jantan, A.E. Omolara, K.V. Dada,
N.A. Mohamed, H. Arshad, State-of-the-art in artificial neural
network applications: a survey, Heliyon, 4 (2018), doi: 10.1016/j.
heliyon.2018.e00938.
- E. Martínez-Martínez, B.A. Escobedo-Trujillo, D. Colorado,
L.I. Morales, A. Huicochea, J.A. Hernández, J. Siqueiros,
Criteria for improving the traditional artificial neural network
methodology applied to predict COP for a heat transformer,
Desal. Water Treat., 73 (2017) 90–100.
- D.E. Millán-Ocampo, A. Parrales-Bahena, J.G. González-Rodríguez, S. Silva-Martínez, J. Porcayo-Calderón, J.A.
Hernández-Pérez, Modelling of behavior for inhibition
corrosion of bronze using artificial neural network (ANN),
Entropy, 20 (2018) 409.
- J. Han, M. Kamber, J. Pei, Data Mining Concepts and Techniques,
3rd ed., Morgan Kaufmann Publishers 225 Wyman Street,
Waltham, MA 02451, USA, 2012.
- A. Bassam, R.A. Conde-Gutierrez, J. Castillo, G. Laredo,
J.A. Hernandez, Direct neural network modeling for separation
of linear and branched paraffins by adsorption process for
gasoline octane number improvement, Fuel, 124 (2014) 158–167.
- C.I. Rocabruno-Valdés, L.F. Ramírez-Verduzco, J.A. Hernández,
Artificial neural network models to predict density, dynamic
viscosity, and cetane number of biodiesel, Fuel, 147 (2015) 9–17.
- M. Mohanraj, S. Jayaraj, C. Muraleedharan, Applications
of artificial neural networks for thermal analysis of heat
exchangers - a review, Int. J. Therm. Sci., 90 (2015) 150–172.
- H.K. Ghritlahre, R.K. Prasad, Application of ANN technique to
predict the performance of solar collector systems - a review,
Renewable Sustainable Energy Rev., 84 (2018) 75–88.
- S.P. Verma, Estadística Básica para el Manejo de Datos
Experimentales: Aplicación en la Geoquímica (Geoquimiometría),
Universidad Nacional Autónoma de México,
México Distrito Federal, 2005.
- S.P. Verma, R. Cruz-Huicochea, Alternative approach for
precise and accurate Student´s t critical values and application
in geosciences, J. Iberian Geol., 39 (2013) 31–56.
- J.A. Rodríguez, Y. El Hamzaoui, J.A. Hernández, J.C. García,
J.E. Flores, A.L. Tejeda, The use of artificial neural network
(ANN) for modeling the useful life of the failure assessment in
blades of steam turbines, Eng. Fail. Anal., 35 (2013) 562–575.
- C.I. Rocabruno-Valdés, J.G. González-Rodriguez, Y. Díaz-Blanco, A.U. Juantorena, J.A. Muñoz-Ledo, Y. El-Hamzaoui,
J.A. Hernández, Corrosion rate prediction for metals in
biodiesel using artificial neural networks, Renewable Energy,
140 (2019) 592–601.
- A. Parrales, J.A. Hernández-Pérez, O. Flores, H. Hernandez,
J.F. Gómez-Aguilar, R. Escobar-Jiménez, A. Huicochea, Heat
transfer coefficients analysis in a helical double-pipe evaporator:
nusselt number correlations through artificial neural networks,
Entropy, 21 (2019) 689.
- J.A. Hernández, D. Colorado, Uncertainty analysis of COP
prediction in a water purification system integrated into a heat
transformer using several artificial neural networks, Desal.
Water Treat., 51 (2013) 1443–1456.
- A. Mehta, A. Rawat, P. Chauhan, Advances in Electric Power
and Energy Infrastructure, Proceedings of ICPCCI 2019,
Vol. 608, Lecture Notes in Electrical Engineering (LNEE), 2020,
p. 264.
- L.I. Morales, R.A. Conde-Gutierrez, J.A. Hernandez,
A. Huicochea, D. Juarez-Romero, J. Siqueiros, Optimization of
an absorption heat transformer with two-duplex components
using inverse neural network and solved by genetic algorithm,
Appl. Therm. Eng., 85 (2015) 322–333.