References

  1. M. Grassi, G. Kaykioglu, V. Belgiorno, G. Lofrano, Removal of Emerging Contaminants from Water and Wastewater by Adsorption Process, G. Lofrano, Ed., Emerging Compounds Removal from Wastewater, Springer, Dordrecht, 2012, pp. 15–37.
  2. K. Kümmerer, The presence of pharmaceuticals in the environment due to human use – present knowledge and future challenges, J. Environ. Manage., 90 (2009) 2354–2366.
  3. K.E. Murray, S.M. Thomas, A.A. Bodour, Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment, Environ. Pollut., 158 (2010) 3462–3471.
  4. D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation process-mediated removal of pharmaceuticals from water: a review, J. Environ. Manage., 219 (2018) 189–207.
  5. Y. Anjaneyulu, N.S. Chary, D.S.S. Raj, Decolourization of industrial effluents – available methods and emerging technologies – a review, Rev. Environ. Sci. Biotechnol., 4 (2005) 245–273.
  6. K. Ikehata, M.G. El-Din, S.A. Snyder, Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater, Ozone Sci. Eng., 30 (2008) 21–26.
  7. N.K. Daud, B.H. Hameed, Decolorization of acid red 1 by Fenton-like process using rice husk ash-based catalyst, J. Hazard. Mater., 176 (2010) 938–944.
  8. S. Yang, H. He, D. Wu, D. Chen, X. Liang, Z. Qin, M. Fan, J. Zhu, P. Yuan, Decolorization of methylene blue by heterogeneous Fenton reaction using Fe3−xTixO4 (0 ≤ x ≤ 0.78) at neutral pH values, Appl. Catal., B, 89 (2009) 527–535.
  9. P.V. Nidheesh, R. Gandhimathi, S.T. Ramesh, Degradation of dyes from aqueous solution by Fenton processes: a review, Environ. Sci. Pollut. Res., 20 (2013) 2099–2132.
  10. F. Çiçek, D. Özer, A. Özer, A. Özer, Low cost removal of reactive dyes using wheat bran, J. Hazard. Mater., 146 (2007) 408–416.
  11. R. Gonzalez-Olmos, M.J. Martin, A. Georgi, F.-D. Kopinke, I. Oller, S. Malato, Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH, Appl. Catal., B, 125 (2012) 51–58.
  12. E.G. Garrido-Ramírez, B.K.G. Theng, M.L. Mora, Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions – a review, Appl. Clay Sci., 47 (2010) 182–192.
  13. A. Ikhlaq, H.M.S. Munir, A. Khan, F. Javed, K.S. Joya, Comparative study of catalytic ozonation and Fenton-like processes using iron-loaded rice husk ash as catalyst for the removal of methylene blue in wastewater, Ozone Sci. Eng., 41 (2019) 250–260.
  14. J. Hong, C. Sun, S.-G. Yang, Y.-Z. Liu, Photocatalytic degradation of methylene blue in TiO2 aqueous suspensions using microwave powered electrodeless discharge lamps, J. Hazard. Mater., 133 (2006) 162–166.
  15. E. Basturk, M. Karatas, Advanced oxidation of Reactive Blue 181 solution: a comparison between Fenton and Sono-Fenton Process, Ultrason. Sonochem., 21 (2014) 1881–1885.
  16. E. Basturk, M. Karatas, Decolorization of antraquinone dye reactive blue 181 solution by UV/H2O2 process, J. Photochem. Photobiol., A, 299 (2015) 67–72.
  17. J. Nawrocki, B. Kasprzyk-Hordern, The efficiency and mechanisms of catalytic ozonation, Appl. Catal., B, 99 (2010) 27–42.
  18. S.M.H. Asl, A. Ghadi, M.S. Baei, H. Javadian, M. Maghsudi, H. Kazemian, Porous catalysts fabricated from coal fly ash as cost-effective alternatives for industrial applications: a review, Fuel, 217 (2018) 320–342.
  19. P.V. Nidheesh, Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review, Environ. Sci. Pollut. Res., 24 (2017) 27047–27069.
  20. A. Ikhlaq, S. Waheed, K.S. Joya, M. Kazmi, Catalytic ozonation of paracetamol on zeolite A: non-radical mechanism, Catal. Commun., 112 (2018) 15–20.
  21. Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
  22. T.-M. Hwang, B.S. Oh, Y. Yoon, M. Kwon, J. Kang, Continuous determination of hydrogen peroxide formed in advanced oxidation and electrochemical processes, Desal. Water Treat., 43 (2012) 267–273.
  23. H. Zhao, G. Zhang, Q. Zhang, MnO2/CeO2 for catalytic ultrasonic degradation of methyl orange, Ultrason. Sonochem., 21 (2014) 991–996.
  24. C. Wei, F. Zhang, Y. Hu, C. Feng, H. Wu, Ozonation in water treatment: the generation, basic properties of ozone and its practical application, Rev. Chem. Eng., 33 (2017) 49–89.
  25. R.R. Solís, F.J. Rivas, A. Martínez-Piernas, A. Agüera, Ozonation, photocatalysis and photocatalytic ozonation of diuron. Intermediates identification, Chem. Eng. J., 292 (2016) 72–81.
  26. A. Alver, A. Kilic, Catalytic ozonation by iron coated pumice for the degradation of natural organic matters, Catalysts, 8 (2018) 219.
  27. J. Wang, Z. Bai, Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater, Chem. Eng. J., 312 (2017) 79–98.
  28. Y. Huang, J. Jiang, L. Ma, Y. Wang, M. Liang, Z. Zhang, L. Li, Iron foam combined ozonation for enhanced treatment of pharmaceutical wastewater, Environ. Res., 183 (2020) 109205.
  29. H.T. Van, L.H. Nguyen, T.K. Hoang, T.P. Tran, A.T. Vo, T.T. Pham, X.C. Nguyen, Using FeO-constituted iron slag wastes as heterogeneous catalyst for Fenton and ozonation processes to degrade reactive red 24 from aqueous solution, Sep. Purif. Technol., 224 (2019) 431–442.
  30. N.T. Hien, L.H. Nguyen, H.T. Van, T.D. Nguyend, T.H.V. Nguyend, T.H.H. Chud, T.V. Nguyen, V.T. Trinh, X.H. Vu, K.H.H. Aziz, Heterogeneous catalyst ozonation of direct black 22 from aqueous solution in the presence of metal slags originating from industrial solid wastes, Sep. Purif. Technol., 233 (2020) 115961.
  31. A. Ikhlaq, H.Z. Anwar, F. Javed, S. Gull, Degradation of safranin by heterogeneous Fenton processes using peanut shell ash based catalyst, Water Sci. Technol., 79 (2019) 1367–1375.
  32. A. Ikhlaq, D.R. Brown, B. Kasprzyk-Hordern, Catalytic ozonation for the removal of organic contaminants in water on alumina, Appl. Catal., B, 165 (2015) 408–418.
  33. L.G. Devi, S.G. Kumar, K.M. Reddy, C. Munikrishnappa, Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism, J. Hazard. Mater., 164 (2009) 459–467.
  34. L.G. Devi, K.S.A. Raju, S.G. Kumar, K.E. Rajashekhar, Photodegradation of di azo dye Bismarck brown by advanced photo- Fenton process: influence of inorganic anions and evaluation of recycling efficiency of iron powder, J. Taiwan Inst. Chem. Eng., 42 (2011) 341–349.
  35. Y. Yao, L.W.L. Sun, S. Zhu, Z. Huang, Y. Mao, W. Lu, W. Chen, Efficient removal of dyes using heterogeneous Fenton catalysts based on activated carbon fibers with enhanced activity, Chem. Eng. Sci., 101 (2013) 424–431.
  36. A. Ikhlaq, B. Kasprzyk-Hordern, Catalytic ozonation of chlorinated VOCs on ZSM-5 zeolites and alumina: formation of chlorides, Appl. Catal., B, 200 (2017) 274–282.
  37. T.M. Albayati, A.A. Sabri, R.A. Alazawi, Separation of methylene blue as pollutant of water by SBA-15 in a fixed-bed column, Arabian J. Sci. Eng., 41 (2016) 2409–2415.
  38. S. Tian, J. Zhang, J. Chen, L. Kong, F. Ding, Y. Xiong, Fe2(MoO4)3 as an effective photo-Fenton-like catalyst for the degradation of anionic and cationic dyes in a wide pH range, Ind. Eng. Chem. Res., 52 (2013) 13333–13341.
  39. G. Ersöz, Fenton-like oxidation of reactive black 5 using rice husk ash based catalyst, Appl. Catal., B, 147 (2014) 353–358.
  40. D. Özer, G. Dursun, A. Özer, Methylene blue adsorption from aqueous solution by dehydrated peanut hull, J. Hazard. Mater., 144 (2007) 171–179.
  41. A. Ikhlaq, M. Anis, F. Javed, H. Ghani, H.M.S. Munir, K. Ijaz, Catalytic ozonation for the treatment of municipal wastewater by iron loaded zeolite A, Desal. Water Treat., 152 (2019) 108–115.
  42. A. Ikhlaq, M. Kazmi, A. Tufail, H. Fatima, K.S. Joya, Application of peanut shell ash as a low-cost support for fenton-like catalytic removal of methylene blue in wastewater, Desal. Water Treat., 111 (2018) 338–334.
  43. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: a review, J. Hazard. Mater., 177 (2010) 70–80.
  44. K. Periasamy, C. Namasivayam, Removal of copper(II) by adsorption onto peanut hull carbon from water and copper plating industry wastewater, Chemosphere, 32 (1996) 769–789.
  45. A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Water Environment Federation, USA, 1915.
  46. A. Ikhlaq, D.R. Brown, B. Kasprzyk-Hordern, Mechanisms of catalytic ozonation: an investigation into superoxide ion radical and hydrogen peroxide formation during catalytic ozonation on alumina and zeolites in water, Appl. Catal., B, 129 (2013) 437–449.
  47. F.Z. Yehia, G. Eshaq, A.M. Rabie, A.H. Mady, A.E. El-Metwally, Phenol degradation by advanced Fenton process in combination with ultrasonic irradiation, Egypt. J. Pet., 24 (2015) 13–18.
  48. M. Hermanek, R. Zboril, I. Medrik, J. Pechousek, C. Gregor, Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles, J. Am. Chem. Soc., 129 (2007) 10929–10936.
  49. F. Adam, J. Andas, I.A. Rahman, A study on the oxidation of phenol by heterogeneous iron silica catalyst, Chem. Eng. J., 165 (2010) 658–667.
  50. R. Andreozzi, V. Caprio, R. Marotta, D. Vogna, Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system, Water Res., 37 (2003) 993–1004.
  51. L. Sumegová, J. Derco, M. Melicher, Influence of reaction conditions on the ozonation process, Acta Chim. Slov., 6 (2013) 168–172.
  52. M. Tichonovas, E. Krugly, D. Jankunaite, V. Racys, D. Martuzevicius, Ozone-UV-catalysis based advanced oxidation process for wastewater treatment, Environ. Sci. Pollut. Res., 24 (2017) 17584–17597.
  53. A. Alver, E. Basturk, Removal of aspartame by catalytic ozonation with nano-TiO2 coated pumice, Desal. Water Treat., 152 (2019) 268–275.
  54. C. Chen, X. Yan, B.A. Yoza, T. Zhou, Y. Li, Y. Zhan, Q. Wang, Q.X. Li, Efficiencies and mechanisms of ZSM5 zeolites loaded with cerium, iron, or manganese oxides for catalytic ozonation of nitrobenzene in water, Sci. Total Environ., 612 (2018) 1424–1432.
  55. J.B. Parsa, S.H. Negahdar, Treatment of wastewater containing acid blue 92 dye by advanced ozone-based oxidation methods, Sep. Purif. Technol., 98 (2012) 315–320.
  56. N.A.S. Amin, J. Akhtar, H.K. Rai, Screening of combined zeolite-ozone system for phenol and COD removal, Chem. Eng. J., 158 (2010) 520–527.
  57. M. Lim, Y. Son, J. Khim, Frequency effects on the sonochemical degradation of chlorinated compounds, Ultrason. Sonochem., 18 (2011) 460–465.
  58. E. Basturk, M. Işık, M. Karatas, Removal of aniline (methylene blue) and azo (reactive red 198) dyes by photocatalysis via nano TiO2, Desal. Water Treat., 143 (2019) 306–313.
  59. B. Jaramillo-Sierra, A. Mercado-Cabrera, A.N. Hernández-Arias, R. Peña-Eguiluz, R. López-Callejas, B.G. Rodríguez-Méndez, R. Valencia-Alvarado, Methylene blue degradation assessment by advanced oxidation methods, J. Appl. Res. Technol., 17 (2019) 172–179.
  60. G. Asgari, A. Rahmani, F.B. Askari, K. Godini, Catalytic ozonation of phenol using copper coated pumice and zeolite as catalysts, J. Res. Health Sci., 12 (2012) 93–97.
  61. X. Liu, Y. Hou, J. Guo, Y. Wang, Q. Zuo, C. Wang, Catalytic ozone aqueous decomposition of methylene blue using composite metal oxides, IOP Conf. Ser.: Mater. Sci. Eng., 87 (2015) 012031.
  62. K. Kruanak, C. Jarusutthirak, Degradation of 2,4,6-trichlorophenol in synthetic wastewater by catalytic ozonation using alumina supported nickel oxides, J. Environ. Chem. Eng., 7 (2019) 102825.