References

  1. A.K. Sarmah, M.T. Meyer, A.B.A. Boxall, A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment, Chemosphere, 65 (2006) 725–759.
  2. B. Wang, X.L. Lv, D.W. Feng, L.H. Xie, J. Zhang, M. Li, Y.B. Xie, J.R. Li, H.C. Zhou, Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water, J. Am. Chem. Soc., 138 (2016) 6204–6216.
  3. S. Rodriguez-Mozaz, S. Chamorro, E. Marti, B. Huerta, M. Gros, A. Sanchez-Melsio, C.M. Borrego, D. Barcelo, Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river, Water Res., 69 (2015) 234–242.
  4. I. Chopra, M. Roberts, Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance, Microbiol. Mol. Biol. Rev., 65 (2001) 232–260.
  5. N. Li, L. Zhou, X.Y. Jin, G. Owens, Z.L. Chen, Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework, J. Hazard. Mater., 366 (2019) 563–572.
  6. M.A. Kohanski, D.J. Dwyer, B. Hayete, C.A. Lawrence, J.J. Collins, A common mechanism of cellular death induced by bactericidal antibiotics, Cell, 130 (2007) 797–810.
  7. M.R. Gillings, Evolutionary consequences of antibiotic use for the resistome, mobilome, and microbial pangenome, Front. Microbiol., 4 (2013) 1–10.
  8. N.L. Millar, S. Siebert, I.B. McInnes, Europe rules on antibiotic harm, Nature, 566 (2019) 326–326.
  9. D.I. Andersson, D. Hughes, Antibiotic resistance and its cost: is it possible to reverse resistance, Nat. Rev. Microbiol., 8 (2010) 260–271.
  10. S.K. Ray, D. Dhakal, G. Gyawali, B. Joshi, A.R. Koirala, S.W. Lee, Transformation of tetracycline in water during degradation by visible light driven Ag nanoparticles decorated alpha-NiMoO4 nanorods: mechanism and pathways, Chem. Eng. J., 373 (2019) 259–274.
  11. S. Kment, F. Riboni, S. Pausova, L. Wang, L.Y. Wang, H. Han, Z. Hubicka, J. Krysa, P. Schmuki, R. Zboril, Photoanodes based on TiO2 and alpha-Fe2O3 for solar water splitting - superior role of 1D nanoarchitectures and of combined heterostructures, Chem. Soc. Rev., 46 (2017) 3716–3769.
  12. H.R. Pouretedal, Z. Tofangsazi, M.H. Keshavarz, Photocatalytic activity of mixture of ZrO2/SnO2, ZrO2/CeO2 and SnO2/CeO2 nanoparticles, J. Alloys Compd., 513 (2012) 359–364.
  13. R. Sasikala, A.R. Shirole, S.R. Bharadwaj, Enhanced photocatalytic hydrogen generation over ZrO2–TiO2–CdS hybrid structure, J. Colloid Interface Sci., 409 (2013) 135–140.
  14. B. Song, T.T. Wang, H.G. Sun, Q. Shao, J.K. Zhao, K.K. Song, L.H. Hao, L. Wang, Z.H. Guo, Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance, Dalton Trans., 46 (2017) 15769–15777.
  15. S.G. Kumar, K.S.R.K. Rao, Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO), Appl. Surf Sci., 391 (2017) 124–148.
  16. L. Jiang, Q.Z. Wang, C.L. Li, J.A. Yuan, W.F. Shangguan, ZrW2O8 photocatalyst and its visible-light sensitization via sulfur anion doping for water splitting, Int. J. Hydrogen Energy, 25 (2010) 7043–7050.
  17. Y.A. Sethi, R.P. Panmand, S.R. Kadam, A.K. Kulkarni, S.K. Apte, S.D. Nails, N. Munirathnam, M.V. Kulkarni, B.B. Kale, Nanostructured CdS sensitized CdWO4 nanorods for hydrogen generation from hydrogen sulfide and dye degradation under sunlight, J. Colloid Interface Sci., 487 (2017) 504–512.
  18. P. Chen, L. Chen, Y. Zeng, F. Ding, X. Jiang, N. Liu, C.T. Au, S.F. Yin, Three-dimension hierarchical heterostructure of CdWO4 microrods decorated with Bi2WO6 nanoplates for highselectivity photocatalytic benzene hydroxylation to phenol, Appl. Catal., B, 234 (2018) 311–317.
  19. C.M. Yang, G.M. Gao, J.J. Zhang, R.P. Liu, R.C. Fan, M. Zhao, Y.W. Wang, S.C. Gan, Surface oxygen vacancy induced solar light activity enhancement of a CdWO4/Bi2O2CO3 core-shell heterostructure photocatalyst, Phys. Chem. Chem. Phys., 19 (2017) 14431–14441.
  20. I. Aslam, C.B. Cao, M. Tanveer, M.H. Farooq, W.S. Khan, M. Tahir, F. Idrees, S. Khalid, A novel Z-scheme WO3/CdWO4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of organic pollutants, RSC Adv., 5 (2015) 6019–6026.
  21. H.W. Huang, X. Han, X.W. Li, S.C. Wang, P.K. Chu, Y.H. Zhang, Fabrication of multiple heterojunctions with tunable visiblelight- active photocatalytic reactivity in BiOBr–BiOI full-range composites based on microstructure modulation and band structures, ACS Appl. Mater. Interfaces, 7 (2015) 482–492.
  22. Y.L. Tian, B.B. Chang, J.L. Lu, J. Fu, F.N. Xi, X.P, Dong, Hydrothermal synthesis of graphitic carbon nitride-Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities, ACS Appl. Mater. Interfaces, 5 (2013) 7079–7085.
  23. J.F. Banfield, S.A. Welch, H. Zhang, T.T. Ebert, R.L. Penn, Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products, Science, 289 (2000) 751–754.
  24. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in singlecrystalline SrTiO3, Nat. Mater., 5 (2006) 312–320.
  25. C. Tang, H.F. Wang, X. Chen, B.Q. Li, T.Z. Hou, B.S. Zhang, Q. Zhang, M.M. Titirici, F. Wei, Topological defects in metal-free nanocarbon for oxygen electrocatalysis, Adv. Mater., 28 (2016) 6845–6851.
  26. Y.A. Vlasov, X.Z. Bo, J.C. Sturm, D.J. Norris, On-chip natural assembly of silicon photonic bandgap crystals, Nature, 414 (2001) 289–293.
  27. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene, ACS Nano, 5 (2011) 26–41.
  28. J.J. Chen, Z.Y. Mao, L.X. Zhang, D.J. Wang, R. Xu, L.J. Bie, B.D. Fahlman, Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes, ACS Nano, 11 (2017) 12650–12657.
  29. G.C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, K.P. Lillerud, Defect engineering: tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis, Chem. Mater., 28 (2016) 3749–3761.
  30. Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, L.C. Zhang, Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting, Acta Mater., 113 (2016) 56–57.
  31. J. Paul, K.P. Rawat, K.S.S. Sarma, S. Sabharwal, Decoloration and degradation of reactive red-120 dye by electron beam irradiation in aqueous solution, Appl. Radiat. Isot., 69 (2011) 982–987.
  32. A. Fernandes, J.C.M. Barreira, A.L. Antonio, A. Rafalski, M.B.P.P. Oliveira, A. Martins, I.C.F.R. Ferreira, How does electron beam irradiation dose affect the chemical and antioxidant profiles of wild dried Amanita mushrooms? Food Chem., 182 (2015) 309–315.
  33. Q.M. Su, G.H. Du, B.S. Xu, In situ growth of In2O3 nanocrystals by electron irradiation in transmission electron microscope, Mater. Lett., 120 (2014) 208–211.
  34. Y.Q. Wang, Y. Feng, F. Mo, G. Qian, Y.M. Chen, D.B. Yu, Y. Wang, X.B. Zhang, Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays, Appl. Phys. Lett., 105 (2014) 023102.
  35. Y.J. Kwon, H.Y. Cho, H.G. Na, B.C. Lee, S.S. Kim, H.W. Kim, Improvement of gas sensing behavior in reduced graphene oxides by electron-beam irradiation, Sens. Actuators, B, 203 (2014) 143–149.
  36. R. Hristu, S.G. Stanciu, D.E. Tranca, G.A. Stanciu, Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films, Appl. Surf. Sci., 346 (2015) 342–347.
  37. A.V. Krasheninnikov, F. Banhart, Engineering of nanostructured carbon materials with electron or ion beams, Nat. Mater., 6 (2007) 723–733.
  38. D.K. Wang, B.K. Chen, Z.P. Wei, X. Fang, J.L. Tang, D. Fang, A. Aierken, X.H. Wang, H. Maliya, Q. Guo, Electron irradiationinduced defects and photoelectric properties of Te-doped GaSb, J. Phys. Chem. Solids, 132 (2019) 26–30.
  39. D. Teweldebrhan, A.A. Balandin, Modification of graphene properties due to electron-beam irradiation, Appl. Phys. Lett., 94 (2009) 013101.
  40. J.S. Bak, J.K. Ko, Y.H. Han, B.C. Lee, I.G. Choi, K.H. Kim, Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment, Bioresour. Technol., 100 (2009) 1285–1290.
  41. O. Ugurlu, J. Haus, A.A. Gunawan, M.G. Thomas, S. Maheshwari, M. Tsapatsis, K.A. Mkhoyan, Radiolysis to knock-on damage transition in zeolites under electron beam irradiation, Phys. Rev. B, 83 (2011) 113408.
  42. Q. Zhu, Y.K. Sun, F.S. Na, J. Wei, S. Xu, Y.L. Li, F. Guo, Fabrication of CdS/titanium-oxo-cluster nanocomposites based on a Ti-32 framework with enhanced photocatalytic activity for tetracycline hydrochloride degradation under visible light, Appl. Catal., B, 254 (2019) 541–550.
  43. J.B. Pan, J.J. Liu, H.C. Ma, S.L. Zuo, U.A. Khan, Y.C. Yu, B.S. Li, Structure of flower-like hierarchical CdS QDs/Bi/Bi2WO6 heterojunction with enhanced photocatalytic activity, New J. Chem., 42 (2018) 7293–7300.
  44. N. Li, Y. Tian, J.H. Zhao, J. Zhang, W. Zuo, L.C. Kong, H. Cui, Z-scheme 2D/3D g-C3N4@ZnO with enhanced photocatalytic activity for cephalexin oxidation under solar light, Chem. Eng. J., 352 (2018) 412–422.
  45. F. Chen, Q. Yang, X.M. Li, G.M. Zeng, D.B. Wang, C.G. Niu, J.W. Zhao, H.X. An, T. Xie, Y.C. Deng, Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation, Appl. Catal., B, 200 (2017) 330–342.
  46. J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J.H. Guo, A.L. Briseno, P.D. Yang, TiO2/BiVO4 nanowire heterostructure photoanodes based on Type II band alignment, ACS Cent. Sci., 2 (2016) 80–88.
  47. C.R. Chen, H.Y. Zeng, M.Y. Yi, G.F. Xiao, R.L. Zhu, X.J. Cao, S.G. Shen, J.W. Peng, Fabrication of Ag2O/Ag decorated ZnAl-layered double hydroxide with enhanced visible light photocatalytic activity for tetracycline degradation, Ecotoxicol. Environ. Saf., 172 (2019) 423–431.
  48. F. Chen, Q. Yang, J. Sun, F.B. Yao, S. Wang, Y.L. Wang, X.L. Wang, X.M. Li, C.G. Niu, D.B. Wang, G.M. Zeng, Enhanced photocatalytic degradation of tetracycline by AgI/BiVO4 heterojunction under visible-light irradiation: mineralization efficiency and mechanism, ACS Appl. Mater. Interfaces, 8 (2016) 32887–32900.
  49. X.Z. Yuan, L.B. Jiang, J. Liang, Y. Pan, J. Zhang, H. Wang, L.J. Leng, Z.B. Wu, R.P. Guan, G.M. Zeng, In-situ synthesis of 3D microsphere-like In2S3/InVO4 heterojunction with efficient photocatalytic activity for tetracycline degradation under visible light irradiation, Chem. Eng. J., 356 (2019) 371–381.