References
- A.K. Sarmah, M.T. Meyer, A.B.A. Boxall, A global perspective
on the use, sales, exposure pathways, occurrence, fate and
effects of veterinary antibiotics (VAs) in the environment,
Chemosphere, 65 (2006) 725–759.
- B. Wang, X.L. Lv, D.W. Feng, L.H. Xie, J. Zhang, M. Li, Y.B. Xie,
J.R. Li, H.C. Zhou, Highly stable Zr(IV)-based metal-organic
frameworks for the detection and removal of antibiotics and
organic explosives in water, J. Am. Chem. Soc., 138 (2016)
6204–6216.
- S. Rodriguez-Mozaz, S. Chamorro, E. Marti, B. Huerta, M. Gros,
A. Sanchez-Melsio, C.M. Borrego, D. Barcelo, Occurrence of
antibiotics and antibiotic resistance genes in hospital and urban
wastewaters and their impact on the receiving river, Water Res.,
69 (2015) 234–242.
- I. Chopra, M. Roberts, Tetracycline antibiotics: mode of action,
applications, molecular biology, and epidemiology of bacterial
resistance, Microbiol. Mol. Biol. Rev., 65 (2001) 232–260.
- N. Li, L. Zhou, X.Y. Jin, G. Owens, Z.L. Chen, Simultaneous
removal of tetracycline and oxytetracycline antibiotics from
wastewater using a ZIF-8 metal organic-framework, J. Hazard.
Mater., 366 (2019) 563–572.
- M.A. Kohanski, D.J. Dwyer, B. Hayete, C.A. Lawrence,
J.J. Collins, A common mechanism of cellular death induced
by bactericidal antibiotics, Cell, 130 (2007) 797–810.
- M.R. Gillings, Evolutionary consequences of antibiotic use for
the resistome, mobilome, and microbial pangenome, Front.
Microbiol., 4 (2013) 1–10.
- N.L. Millar, S. Siebert, I.B. McInnes, Europe rules on antibiotic
harm, Nature, 566 (2019) 326–326.
- D.I. Andersson, D. Hughes, Antibiotic resistance and its
cost: is it possible to reverse resistance, Nat. Rev. Microbiol.,
8 (2010) 260–271.
- S.K. Ray, D. Dhakal, G. Gyawali, B. Joshi, A.R. Koirala, S.W. Lee,
Transformation of tetracycline in water during degradation by
visible light driven Ag nanoparticles decorated alpha-NiMoO4
nanorods: mechanism and pathways, Chem. Eng. J., 373 (2019)
259–274.
- S. Kment, F. Riboni, S. Pausova, L. Wang, L.Y. Wang, H. Han,
Z. Hubicka, J. Krysa, P. Schmuki, R. Zboril, Photoanodes based
on TiO2 and alpha-Fe2O3 for solar water splitting - superior role
of 1D nanoarchitectures and of combined heterostructures,
Chem. Soc. Rev., 46 (2017) 3716–3769.
- H.R. Pouretedal, Z. Tofangsazi, M.H. Keshavarz, Photocatalytic
activity of mixture of ZrO2/SnO2, ZrO2/CeO2 and SnO2/CeO2
nanoparticles, J. Alloys Compd., 513 (2012) 359–364.
- R. Sasikala, A.R. Shirole, S.R. Bharadwaj, Enhanced photocatalytic
hydrogen generation over ZrO2–TiO2–CdS hybrid
structure, J. Colloid Interface Sci., 409 (2013) 135–140.
- B. Song, T.T. Wang, H.G. Sun, Q. Shao, J.K. Zhao, K.K. Song,
L.H. Hao, L. Wang, Z.H. Guo, Two-step hydrothermally synthesized
carbon nanodots/WO3 photocatalysts with enhanced
photocatalytic performance, Dalton Trans., 46 (2017) 15769–15777.
- S.G. Kumar, K.S.R.K. Rao, Comparison of modification strategies
towards enhanced charge carrier separation and photocatalytic
degradation activity of metal oxide semiconductors (TiO2,
WO3 and ZnO), Appl. Surf Sci., 391 (2017) 124–148.
- L. Jiang, Q.Z. Wang, C.L. Li, J.A. Yuan, W.F. Shangguan, ZrW2O8
photocatalyst and its visible-light sensitization via sulfur anion
doping for water splitting, Int. J. Hydrogen Energy, 25 (2010)
7043–7050.
- Y.A. Sethi, R.P. Panmand, S.R. Kadam, A.K. Kulkarni,
S.K. Apte, S.D. Nails, N. Munirathnam, M.V. Kulkarni, B.B. Kale,
Nanostructured CdS sensitized CdWO4 nanorods for hydrogen
generation from hydrogen sulfide and dye degradation under
sunlight, J. Colloid Interface Sci., 487 (2017) 504–512.
- P. Chen, L. Chen, Y. Zeng, F. Ding, X. Jiang, N. Liu, C.T. Au,
S.F. Yin, Three-dimension hierarchical heterostructure of
CdWO4 microrods decorated with Bi2WO6 nanoplates for highselectivity
photocatalytic benzene hydroxylation to phenol,
Appl. Catal., B, 234 (2018) 311–317.
- C.M. Yang, G.M. Gao, J.J. Zhang, R.P. Liu, R.C. Fan, M. Zhao,
Y.W. Wang, S.C. Gan, Surface oxygen vacancy induced solar
light activity enhancement of a CdWO4/Bi2O2CO3 core-shell
heterostructure photocatalyst, Phys. Chem. Chem. Phys.,
19 (2017) 14431–14441.
- I. Aslam, C.B. Cao, M. Tanveer, M.H. Farooq, W.S. Khan,
M. Tahir, F. Idrees, S. Khalid, A novel Z-scheme WO3/CdWO4
photocatalyst with enhanced visible-light photocatalytic
activity for the degradation of organic pollutants, RSC Adv.,
5 (2015) 6019–6026.
- H.W. Huang, X. Han, X.W. Li, S.C. Wang, P.K. Chu, Y.H. Zhang,
Fabrication of multiple heterojunctions with tunable visiblelight-
active photocatalytic reactivity in BiOBr–BiOI full-range
composites based on microstructure modulation and band
structures, ACS Appl. Mater. Interfaces, 7 (2015) 482–492.
- Y.L. Tian, B.B. Chang, J.L. Lu, J. Fu, F.N. Xi, X.P, Dong,
Hydrothermal synthesis of graphitic carbon nitride-Bi2WO6
heterojunctions with enhanced visible light photocatalytic
activities, ACS Appl. Mater. Interfaces, 5 (2013) 7079–7085.
- J.F. Banfield, S.A. Welch, H. Zhang, T.T. Ebert, R.L. Penn,
Aggregation-based crystal growth and microstructure
development in natural iron oxyhydroxide biomineralization
products, Science, 289 (2000) 751–754.
- K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the
electrical resistance of individual dislocations in singlecrystalline
SrTiO3, Nat. Mater., 5 (2006) 312–320.
- C. Tang, H.F. Wang, X. Chen, B.Q. Li, T.Z. Hou, B.S. Zhang,
Q. Zhang, M.M. Titirici, F. Wei, Topological defects in metal-free
nanocarbon for oxygen electrocatalysis, Adv. Mater., 28 (2016)
6845–6851.
- Y.A. Vlasov, X.Z. Bo, J.C. Sturm, D.J. Norris, On-chip natural
assembly of silicon photonic bandgap crystals, Nature,
414 (2001) 289–293.
- F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects
in graphene, ACS Nano, 5 (2011) 26–41.
- J.J. Chen, Z.Y. Mao, L.X. Zhang, D.J. Wang, R. Xu, L.J. Bie,
B.D. Fahlman, Nitrogen-deficient graphitic carbon nitride with
enhanced performance for lithium ion battery anodes, ACS
Nano, 11 (2017) 12650–12657.
- G.C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye,
K.P. Lillerud, Defect engineering: tuning the porosity and
composition of the metal-organic framework UiO-66 via
modulated synthesis, Chem. Mater., 28 (2016) 3749–3761.
- Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang,
T.B. Sercombe, L.C. Zhang, Microstructure, defects and
mechanical behavior of beta-type titanium porous structures
manufactured by electron beam melting and selective laser
melting, Acta Mater., 113 (2016) 56–57.
- J. Paul, K.P. Rawat, K.S.S. Sarma, S. Sabharwal, Decoloration
and degradation of reactive red-120 dye by electron beam
irradiation in aqueous solution, Appl. Radiat. Isot., 69 (2011)
982–987.
- A. Fernandes, J.C.M. Barreira, A.L. Antonio, A. Rafalski, M.B.P.P.
Oliveira, A. Martins, I.C.F.R. Ferreira, How does electron beam
irradiation dose affect the chemical and antioxidant profiles
of wild dried Amanita mushrooms? Food Chem., 182 (2015)
309–315.
- Q.M. Su, G.H. Du, B.S. Xu, In situ growth of In2O3 nanocrystals
by electron irradiation in transmission electron microscope,
Mater. Lett., 120 (2014) 208–211.
- Y.Q. Wang, Y. Feng, F. Mo, G. Qian, Y.M. Chen, D.B. Yu,
Y. Wang, X.B. Zhang, Influence of irradiation upon few-layered
graphene using electron-beams and gamma-rays, Appl. Phys.
Lett., 105 (2014) 023102.
- Y.J. Kwon, H.Y. Cho, H.G. Na, B.C. Lee, S.S. Kim, H.W. Kim,
Improvement of gas sensing behavior in reduced graphene
oxides by electron-beam irradiation, Sens. Actuators, B,
203 (2014) 143–149.
- R. Hristu, S.G. Stanciu, D.E. Tranca, G.A. Stanciu, Electron beam
influence on the carbon contamination of electron irradiated
hydroxyapatite thin films, Appl. Surf. Sci., 346 (2015) 342–347.
- A.V. Krasheninnikov, F. Banhart, Engineering of nanostructured
carbon materials with electron or ion beams, Nat. Mater.,
6 (2007) 723–733.
- D.K. Wang, B.K. Chen, Z.P. Wei, X. Fang, J.L. Tang, D. Fang,
A. Aierken, X.H. Wang, H. Maliya, Q. Guo, Electron irradiationinduced
defects and photoelectric properties of Te-doped GaSb,
J. Phys. Chem. Solids, 132 (2019) 26–30.
- D. Teweldebrhan, A.A. Balandin, Modification of graphene
properties due to electron-beam irradiation, Appl. Phys. Lett.,
94 (2009) 013101.
- J.S. Bak, J.K. Ko, Y.H. Han, B.C. Lee, I.G. Choi, K.H. Kim,
Improved enzymatic hydrolysis yield of rice straw using
electron beam irradiation pretreatment, Bioresour. Technol., 100
(2009) 1285–1290.
- O. Ugurlu, J. Haus, A.A. Gunawan, M.G. Thomas,
S. Maheshwari, M. Tsapatsis, K.A. Mkhoyan, Radiolysis to
knock-on damage transition in zeolites under electron beam
irradiation, Phys. Rev. B, 83 (2011) 113408.
- Q. Zhu, Y.K. Sun, F.S. Na, J. Wei, S. Xu, Y.L. Li, F. Guo,
Fabrication of CdS/titanium-oxo-cluster nanocomposites based
on a Ti-32 framework with enhanced photocatalytic activity
for tetracycline hydrochloride degradation under visible light,
Appl. Catal., B, 254 (2019) 541–550.
- J.B. Pan, J.J. Liu, H.C. Ma, S.L. Zuo, U.A. Khan, Y.C. Yu,
B.S. Li, Structure of flower-like hierarchical CdS QDs/Bi/Bi2WO6
heterojunction with enhanced photocatalytic activity, New
J. Chem., 42 (2018) 7293–7300.
- N. Li, Y. Tian, J.H. Zhao, J. Zhang, W. Zuo, L.C. Kong, H. Cui,
Z-scheme 2D/3D g-C3N4@ZnO with enhanced photocatalytic
activity for cephalexin oxidation under solar light, Chem. Eng.
J., 352 (2018) 412–422.
- F. Chen, Q. Yang, X.M. Li, G.M. Zeng, D.B. Wang, C.G. Niu,
J.W. Zhao, H.X. An, T. Xie, Y.C. Deng, Hierarchical assembly
of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme
photocatalyst: an efficient, sustainable and heterogeneous
catalyst with enhanced visible-light photoactivity towards
tetracycline degradation under visible light irradiation, Appl.
Catal., B, 200 (2017) 330–342.
- J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee,
J.H. Guo, A.L. Briseno, P.D. Yang, TiO2/BiVO4 nanowire
heterostructure photoanodes based on Type II band alignment,
ACS Cent. Sci., 2 (2016) 80–88.
- C.R. Chen, H.Y. Zeng, M.Y. Yi, G.F. Xiao, R.L. Zhu, X.J. Cao,
S.G. Shen, J.W. Peng, Fabrication of Ag2O/Ag decorated
ZnAl-layered double hydroxide with enhanced visible light
photocatalytic activity for tetracycline degradation, Ecotoxicol.
Environ. Saf., 172 (2019) 423–431.
- F. Chen, Q. Yang, J. Sun, F.B. Yao, S. Wang, Y.L. Wang,
X.L. Wang, X.M. Li, C.G. Niu, D.B. Wang, G.M. Zeng, Enhanced
photocatalytic degradation of tetracycline by AgI/BiVO4
heterojunction under visible-light irradiation: mineralization
efficiency and mechanism, ACS Appl. Mater. Interfaces, 8 (2016)
32887–32900.
- X.Z. Yuan, L.B. Jiang, J. Liang, Y. Pan, J. Zhang, H. Wang,
L.J. Leng, Z.B. Wu, R.P. Guan, G.M. Zeng, In-situ synthesis of
3D microsphere-like In2S3/InVO4 heterojunction with efficient
photocatalytic activity for tetracycline degradation under
visible light irradiation, Chem. Eng. J., 356 (2019) 371–381.