References

  1. S. Lonercan, T. Vansickle, Relationship between water quality and human health: a case study of the Linggi river basin in Malaysia, Soc. Sci. Med., 33 (1991) 937–946.
  2. K.P. Singh, A. Malik, D. Mohan, S. Sinha, Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study, Water Res., 38 (2004) 3980–3992.
  3. K.P. Singh, A. Malik, S. Sinha, Water quality assessment and appointment of pollution sources of Gomti River (India) using multivariate statistical techniques: a case study, Anal. Chim. Acta, 538 (2005) 355–374.
  4. R. Koklu, B. Sengorur, B. Topal, Water quality assessment using multivariate statistical methods, a case study: Melen River system, Water Resour. Manage., 24 (2010) 959–978.
  5. P.W. Ramteke, Comparison of standard most probable number method with three alternate tests for detection of bacteriological water quality indicators, Environ. Toxicol. Water Qual., 10 (1995) 173–178.
  6. Canadian Council of Ministers of the Environment CCME, Canadian Water Quality Guide-Lines for the Protection of Aquatic Life: CCME Water Quality Index 1.0, Technical Report, Winnepeg, Canada, 2001.
  7. F.W. Kaurish, T. Younos, Developing a standardized water quality index for evaluating surface water quality, J. Am. Water Resour. Assoc., 43 (2007) 533–545.
  8. N.M. Gazzaz, M.K. Yusoff, A.Z. Aris, H. Juahir, M.F. Ramli, Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors, Mar. Pollut. Bull., 64 (2012b) 2409–2420.
  9. S.F. Pesce, D.A. Wunderlin, Use of water quality indices to verify the impact of Cordóba City (Argentina) on Suquía River, Water Res., 34 (2000) 2915–2926.
  10. C.G. Cude, Oregon water quality index a tool for evaluating water quality management effectiveness, J. Am. Water Resour. Assoc., 37 (2001) 125–137.
  11. A. Sargaonkar, V. Deshpande, Development of an overall index of pollution for surface water based on a general classification scheme in Indian context, Environ. Monit. Assess., 89 (2003) 43–67.
  12. A.A. Bordalo, R. Teixeira, W.J. Wiebe, A water quality index applied to an international Shared River basin: the case of the Douro River, Environ. Manage., 38 (2006) 910–920.
  13. H. Boyacioglu, Development of a water quality Index based on a European classification scheme, Water SA, 33 (2007) 101–106.
  14. T. Song, K. Kim, Development of a water quality loading index based on water quality modeling, J. Environ. Manage., 90 (2009) 1534–1543.
  15. X. Wang, F. Zhang, J. Ding, Evaluation of water quality based on a machine learning algorithm and water quality index for the Ebinur Lake Watershed, China, Sci. Rep., 7 (2017) 12858.
  16. B. Sakaa, S. Merdas, T. Mostephaoui, H. Chaffai, A. Hani, L. Djabri, The application of ANNs and multivariate statistical techniques to characterize a relationship between total dissolved solids and pressure indicators: a case study of the Saf-Saf river basin, Algeria, Desal. Water Treat., 57 (2015) 12963–12976.
  17. F. Khelfaoui, D. Zouini, L. Tandjir, Quantitative and qualitative diagnosis of water resources in the Saf-Saf river basin (north east of Algeria), Desal. Water Treat., 52 (2014) 2017–2021.
  18. H.R. Maier, G.C. Dandy, Neural networks for the prediction and forecasting of water sources variables: a review of a modeling issues and applications, Environ. Modell. Softw., 15 (2000) 101–124.
  19. B. Sakaa, H. Chaffai, A. Hani, The ANNs approach to identify water demand drivers for Saf-Saf river basin, J. Appl. Water Eng. Res., 8 (2020) 44–54.
  20. H.R. Maier, G.C. Dandy, The use of artificial neural networks for the prediction of water quality parameters, Water Resour. Res., 32 (1996) 1013–1022.
  21. D. Guclu, S. Dursun, Amelioration of carbon removal prediction for an activated sludge process using an artificial neural network (ANN), Clean Soil Air Water, 36 (2008) 781–787.
  22. E. Dogan, B. Sengorur, R. Koklu, Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique, J. Environ. Manage., 90 (2009) 1229–1235.
  23. M. Ay, O. Kisi, Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado, USA, J. Environ. Eng., 138 (2012) 654–662.
  24. M.M. Hamed, M.G. Khalafallah, E.A. Hassanien, Prediction of wastewater treatment plant performance using artificial neural networks, Environ. Modell. Softw., 19 (2004) 919–928.
  25. S. Heddam, H. Lamda, S. Filali, Predicting effluent biochemical oxygen demand in a wastewater treatment plant using generalized regression neural network based approach: a comparative study, Environ. Process., 3 (2016) 153–165.
  26. T.A. Clair, J.M. Ehrman, Variations in discharge and dissolved organic carbon and nitrogen export from terrestrial basins with changes in climate: a neural network approach, Limnol. Oceanogr., 41 (1996) 921–927.
  27. C. Karul, S. Soyupak, A.F. Çilesiz, N. Akbay, E. Germen, Case studies on the use of neural networks in eutrophication modeling, Ecol. Modell., 134 (2000) 145–152.
  28. Y. Zhao, J. Nan, F.-y. Cui, L. Guo, Water quality forecast through application of BP neural network at Yuquio reservoir, J. Zhejiang Univ. Sci. A, 8 (2007) 1482–1487.
  29. R. Wenning, G.E. Rickson, Interpretation and analysis of complex environmental data using chemometric methods, Trends Anal. Chem., 13 (1994) 446–457.
  30. H. Razmkhah, A. Abrishamchi, A. Torkian, Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: a case study on Jajrood River (Tehran, Iran), J. Environ. Manage., 91 (2010) 852–860.
  31. M. Vega, R. Pardo, E. Barrado, L. Debán, Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis, Water Res., 32 (1998) 3581–3592.
  32. B. Helena, R. Pardo, M. Vega, E. Barrado, J.M. Fernandez, L. Fernandez, Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis, Water Res., 34 (2000) 807–816.
  33. D.R. Helsel, R.M. Hirsch, Statistical Methods in Water Resources, US Geological Survey, Water Resources Division, Reston, 1992.
  34. A.W. Minns, M.J. Hall, Artificial neural networks as rainfall– runoff models, Hydrol. Sci. J., 41 (1996) 399–417.
  35. D. Patterson, Artificial Neural Networks, Prentice Hall, Singapore, 1996.
  36. S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, New Jersey, 1999.
  37. M. Caudill, C. Butler, Understanding Neural Networks, Basic Networks, Vol. 1. MIT Press, Cambridge, MA, 1992.
  38. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning Internal Representations by Error Propagation, D.E. Rumelhart, J.L. McClelland, The PDP Research Group, Eds., Paralled Distributed Processing, Explorations in the Microstructure of Cognition, Vol. 1, Foundations, The MIT Press, Cambridge, MA, 1986, pp. 318–362.
  39. C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, 1995.
  40. J. Liu, H.H.G. Savenije, J. Xu, Forecast of water demand in Weinan City in China using WDF-ANN model, Phys. Chem. Earth, 28 (2003) 219–224.
  41. World Meteorological Organization WMO, Inter-comparison of conceptual models used in operational hydrological forecasting, Technical series, Water Resour. Res., 27 (1975) 2415–2450.
  42. S. Platikanov, X. Puig, J. Martin-Alonso, R. Tauler, Chemometric modeling and prediction of trihalomethane formation in Barcelona’s water works plant, Water Res., 41 (2007) 3394–3406.
  43. B. Sakaa, H. Chaffai, A. Hani, The use of artificial neural networks in the modeling of socioeconomic category of integrated water resources management. Case study: Saf-Saf river basin, north east of Algeria, Arabian J. Geosci., 6 (2013) 3969–3978.
  44. M. Kumar, A.L. Ramanathan, M.S. Rao, B. Kumar, Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India, Environ. Geol., 50 (2006) 1025–1039.
  45. D. Fletcher, E. Goss, Forecasting with neural networks: an application using bankruptcy data, Inf. Manage., 24 (1993) 159–167.
  46. K.P. Singh, A. Basant, A. Malik, G. Jain, Artificial neural network modeling of the river water quality—a case study, Ecol. Modell., 220 (2009) 888–895.
  47. H. Galal-Gorchev, G. Ozolins, X. Bonnefoy, Revision of the WHO guidelines for drinking water quality, Ann. Ist. Super. Sanita, 29 (1993) 335–345.