References

  1. C. Gunawardana, A. Goonetilleke, P. Egodawatta, L. Dawes, S. Kokot, Source characterisation of road dust based on chemical and mineralogical composition, Chemosphere, 87 (2012) 163–170.
  2. H.T. Zhao, X.Y. Li, X.M. Wang, D. Tian, Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China, J. Hazard. Mater., 183 (2010) 203–210.
  3. P.K. Hopke, Review of receptor modeling methods for source apportionment, J. Air Waste Manage., 66 (2016) 237–259.
  4. S. Abbasi, B. Keshavarzi, Source identification of total petroleum hydrocarbons and polycyclic aromatic hydrocarbons in PM10 and street dust of a hot spot for petrochemical production: Asaluyeh County, Iran, Sustainable Cities Soc., 45 (2019) 214–230.
  5. C.L.M. Bourotte, L.E. Sugauara, M.R.R. De Marchi, C.E. Souto- Oliveira, Trace metals and PAHs in topsoils of the University campus in the megacity of Sao Paulo, Brazil, An. Acad. Bras. Cienc., 91 (2019) e20180334.
  6. J. Zhang, R.F. Li, X.Y. Zhang, Y. Bai, P. Cao, P. Hua, Vehicular contribution of PAHs in size dependent road dust: a source apportionment by PCA-MLR, PMF, and Unmix receptor models, Sci. Total Environ., 649 (2019) 1314–1322.
  7. G. Gbeddy, P. Egodawatta, A. Goonetilleke, G. Ayoko, L. Chen, Application of quantitative structure-activity relationship (QSAR) model in comprehensive human health risk assessment of PAHs, and alkyl-, nitro-, carbonyl-, and hydroxyl-PAHs laden in urban road dust, J. Hazard. Mater., 383 (2019) 121154.
  8. M. Gope, R.E. Masto, J. George, S. Balachandran, Exposure and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the street dust of Asansol city, India, Sustainable Cities Soc., 38 (2018) 616–626.
  9. N. Bortey-Sam, Y. Ikenaka, S.M.M. Nakayama, O. Akoto, Y.B. Yohannes, E. Baidoo, H. Mizukawa, M. Ishizuka, Occurrence, distribution, sources and toxic potential of polycyclic aromatic hydrocarbons (PAHs) in surface soils from the Kumasi Metropolis, Ghana, Sci. Total Environ., 496 (2014) 471–478.
  10. L. Huang, S.M. Chernyak, S.A. Batterman, PAHs (polycyclic aromatic hydrocarbons), nitro-PAHs, and hopane and sterane biomarkers in sediments of southern Lake Michigan, USA, Sci. Total Environ., 487 (2014) 173–186.
  11. X.Y. Wang, H.Z. Xu, Y.D. Zhou, C.W. Wu, P. Kanchanopas- Barnette, Distribution and source apportionment of polycyclic aromatic hydrocarbons in surface sediments from Zhoushan Archipelago and Xiangshan Harbor, East China Sea, Mar. Pollut. Bull., 101 (2015) 895–902.
  12. P.K. Hopke, Discussion of “Sensitivity of a molecular marker based positive matrix factorization model to the number of receptor observations” by YuanXun Zhang, Rebecca J. Sheesley, Min-Suk Bae and James J. Schauer, Atmos. Environ., 44 (2010) 1138.
  13. C. Men, R.M. Liu, Q.R. Wang, L.J. Guo, Y.X. Miao, Z.Y. Shen, Uncertainty analysis in source apportionment of heavy metals in road dust based on positive matrix factorization model and geographic information system, Sci. Total Environ., 652 (2019) 27–39.
  14. S.G. Brown, S. Eberly, P. Paatero, G.A. Norris, Methods for estimating uncertainty in PMF solutions: examples with ambient air and water quality data and guidance on reporting PMF results, Sci. Total Environ., 518 (2015) 626–635.
  15. A. Hanedar, K. Alp, B. Kaynak, E. Avşar, Toxicity evaluation and source apportionment of polycyclic aromatic hydrocarbons (PAHs) at three stations in Istanbul, Turkey, Sci. Total Environ., 488 (2014) 439–448.
  16. C.H. Liu, F.L. Tian, J.W. Chen, X.H. Li, X.L. Qiao, A comparative study on source apportionment of polycyclic aromatic hydrocarbons in sediments of the Daliao River, China: positive matrix factorization and factor analysis with non-negative constraints, Chin. Sci. Bull., 55 (2010) 915–920.
  17. G.-L. Shi, G.-R. Liu, X. Peng, Y.-N. Wang, Y.-Z. Tian, W. Wang, Y.-C. Feng, A comparison of multiple combined models for source apportionment, including the PCA/MLR-CMB, Unmix- CMB and PMF-CMB models, Aerosol Air Qual. Res., 14 (2014) 2040–2050.
  18. M.P. Zelenka, W.E. Wilson, J.C. Chow, P.J. Lioy, A combined TTFA CMB receptor modeling approach and its application to air-pollution sources in China, Atmos. Environ., 28 (1994) 1425–1435.
  19. C. Venkataraman, S.K. Friedlander, Source resolution of fine particulate polycyclic aromatic hydrocarbons using a receptor model modified for reactivity, J. Air Waste Manage., 44 (1994) 1103–1108.
  20. J. Wang, Y.-F. Zhang, Y.-C. Feng, X.-J. Zheng, L. Jiao, S.-M. Hong, J.-D. Shen, T. Zhu, J. Ding, Q. Zhang, Characterization and source apportionment of aerosol light extinction with a coupled model of CMB-IMPROVE in Hangzhou, Yangtze River Delta of China, Atmos. Res., 178 (2016) 570–579.
  21. S. Demir, A. Saral, A new modification to the chemical mass balance receptor model for volatile organic compound source apportionment, Clean–Soil Air Water, 39 (2011) 891–899.
  22. Y.X. Li, N.N. Song, Y. Yu, Z.F. Yang, Z.Y. Shen, Characteristics of PAHs in street dust of Beijing and the annual wash-off load using an improved load calculation method, Sci. Total Environ., 581 (2017) 328–336.
  23. P. Paatero, U. Tapper, Positive matrix factorization: a nonnegative factor model with optimal utilization of error estimates of data values, Environmetrics, 5 (1994) 111–126.
  24. J.G. Watson, J.C. Chow, Z.Q. Lu, E.M. Fujita, D.H. Lowenthal, D.R. Lawson, L.L. Ashbaugh, Chemical mass balance source apportionment of PM10 during the southern California air quality study, Aerosol Sci. Technol., 21 (1994) 1–36.
  25. M. Liu, S.B. Cheng, D.N. Ou, L.J. Hou, L. Gao, L.L. Wang, Y.S. Xie, Y. Yang, S.Y. Xu, Characterization, identification of road dust PAHs in central Shanghai areas, China, Atmos. Environ., 41 (2007) 8785–8795.
  26. T. Kameda, Atmospheric Reactions of PAH Derivatives: Formation and Degradation, Springer, Singapore, 2018, pp. 75–91.
  27. D. Karali, S. Rapsomanikis, A. Christoforidis, Kinetic behavior of non-volatile PAHs associated with urban aerosol, Air Qual. Atmos. Health, 11 (2018) 825–833.
  28. G.-L. Shi, F. Zeng, X. Li, Y.-C. Feng, Y.-Q. Wang, G.-X. Liu, T. Zhu, Estimated contributions and uncertainties of PCA/ MLR–CMB results: source apportionment for synthetic and ambient datasets, Atmos. Environ., 45 (2011) 2811–2819.
  29. K. Ashrafi, R. Fallah, M. Hadei, M. Yarahmadi, A. Shahsavani, Source apportionment of total suspended particles (TSP) by positive matrix factorization (PMF) and chemical mass balance (CMB) modeling in Ahvaz, Iran, Arch. Environ. Contam. Toxicol., 75 (2018) 278–294.