References
- J. Phattaranawik, A.G. Fane, F.S. Wong, Novel membrane-based
sensor for online membrane integrity monitoring, J. Membr.
Sci., 232 (2008) 113–124.
- J.M. Laîne, K. Glucina, M. Chamant, P. Simonie, Acoustic
sensor: a novel technique for low pressure membrane integrity
monitoring, Desalination, 119 (1998) 73–77.
- M.W. Phillips, A.J. Di Leo, A validatable porosimetric technique
for verifying the integrity of virus-retentive membranes,
Biologicals, 24 (1996) 243–253.
- G.F. Crozes, S. Sethi, B.X. Mi, J. Curl, B. Mariñas, Improving
membrane integrity monitoring indirect methods to reduce
plant downtime and increase microbial removal credit,
Desalination, 149 (2002) 493–497.
- W.B. Krantz, C.S. Lin, P.C.Y. Sin, A. Yeo, A.G. Fane, An
integrity sensor for assessing the performance of low pressure
membrane modules in the water industry, Desalination,
283 (2011) 117–122.
- C. Liang, F.P. Sun, C.A. Rogers, Coupled electro-mechanical
analysis of adaptive material systems – determination of the
actuator power consumption and system energy transfer,
J. Intell. Mater. Syst. Struct., 5 (1994) 12–20.
- V. Giurgiutiu, A. Reynolds, C.A. Rogers, Experimental
investigation of E/M impedance health monitoring for spotwelded
structural joints, J. Intell. Mater. Syst. Struct., 10 (1999)
802–812.
- G. Park, H.H. Cudney, D.J. Inman, Impedance-based health
monitoring of civil structural components, J. Am. Soc. Civ. Eng.,
6 (2000) 153–160.
- G.H. Park, H. Sohn, C.R. Farrar, D.J. Inman, Overview of
piezoelectric impedance-based health monitoring and path
forward, Shock Vib. Dig., 35 (2003) 451–463
- C.G. Lee, J.Y. Kim, S.H. Park, D.-H. Kim, Advanced fatigue crack
detection using nonlinear self-sensing impedance technique
for automated NDE of metallic structures, Res. Nondestr. Eval.,
26 (2015) 107–121.
- J.Y. Kim, C.G. Lee, S.H. Park, Artificial neural network-based
early-age concrete strength monitoring using dynamic response
signals, Sensors, 17 (2017), doi: 10.3390/s17061319.
- T.-K. Oh, J.Y. Kim, C.G. Lee, S.H. Park, Nondestructive concrete
strength estimation based on electro-mechanical impedance
with artificial neural network, J. Adv. Concr. Technol., 15 (2017)
94–102.
- C.G. Lee, S.H. Park, J.E. Bolander, S.H. Pyo, Monitoring the
hardening process of ultra high performance concrete using
decomposed modes of guided waves, Constr. Build. Mater.,
163 (2018) 267–276.
- S.H. Park, D.J. Inman, J.-J. Lee, C.-B. Yun, Piezoelectric sensorbased
health monitoring of railroad tracks using a two-step
support vector machine classifier, J. Infrastruct. Syst., 14 (2008)
80–88.
- Y.-S. Lee, J.Y. Kim, C.G. Lee, S.H. Park, Applicability
investigation of piezoelectric sensor-based damage detection
technique for membrane, Desal. Water Treat., 143 (2019) 24–28.
- S.J. Lee, H. Sohn, Active self-sensing scheme development for
structural health monitoring, Smart Mater. Struct., 15 (2006)
1734–1746.
- S.J. Lee, H. Sohn, J.-W. Hong, Time reversal based piezoelectric
transducer self-diagnosis under varying temperature, J. Nondestr.
Eval., 29 (2010) 75–91.
- J.-W. Kim, C.G. Lee, S.H. Park, K.-T. Koh, Real-time strength
development monitoring for concrete structures using wired
and wireless electro-mechanical impedance techniques, KSCE
J. Civ. Eng., 17 (2013) 1432–1436.
- S.-K. Choi, N. Tareen, J.Y. Kim, S.H. Park, I. Park, Real-time
strength monitoring for concrete structures using EMI technique
incorporating with fuzzy logic, Appl. Sci.-Basel, 8 (2018) 1–13.