References
- M. Garrido-Baserba, S. Vinardell, M. Molinos-Senante,
D. Rosso, M. Poch, The economics of wastewater treatment
decentralization: a techno-economic evaluation, Environ. Sci.
Technol., 52 (2018) 8965–8976.
- S. Kamble, A. Singh, A. Kazmi, M. Starkl, Environmental and
economic performance evaluation of municipal wastewater
treatment plants in India: a life cycle approach, Water Sci.
Technol., 79 (2019) 1102–1112.
- A.R. Sheik, E.E.L. Muller, P. Wilmes, A hundred years of
activated sludge: time for a rethink, Front. Microbiol., 5 (2014)
47–53.
- M. Park, N. Kim, S. Lee, S. Yeon, J.H. Seo, D. Park, A study of
solubilization of sewage sludge by hydrothermal treatment,
J. Environ. Manage., 250 (2019) 109490.
- A. Raheem, V.S. Sikarwar, J. He, W. Dastyar, D.D. Dionysiou,
W. Wang, M. Zhao, Opportunities and challenges in sustainable
treatment and resource reuse of sewage sludge: a review, Chem.
Eng. J., 337 (2018) 616–641.
- W. Hu, C. Li, C. Ye, J. Wang, W. Wei, Y. Deng, Research progress
on ecological models in the field of water eutrophication:
citespace analysis based on data from the ISI web of science
database, Ecol. Modell., 410 (2019) 108779.
- Ministry of Environment, Feasibility Study for Advanced
Water Quality Improvement Plan (Nakdong River Basin,
2008. Available at: http://webbook.me.go.kr/DLi-File/
pdf/2011/07/5503746.pdf [Accessed: 25-Dec-2019].
- N.K. Shammas, L.K. Wang, Process selection of biosolids
management systems, L.K. Wang, N.K. Shammas, Y.-T. Hung,
Eds., Biosolids Engineering and Management, 2008, pp. 691–743.
- Z. Guo, Y. Sun, S.-Y. Pan, P.-C. Chiang, Integration of green
energy and advanced energy-efficient technologies for
municipal wastewater treatment plants, Int. J. Environ. Res.
Public Health, 16 (2019) 1282.
- OVIVO, Municipal Wastewater/Aerobic Treatment/Nutrient
Removal, 2019. Available at: https://www.ovivowater.com/
solution/municipal/municipal-wastewater/aerobic-treatmentnutrient-
removal/ [Accessed: 29-Sep-2019].
- J.T. Bunce, E. Ndam, I.D. Ofiteru, A. Moore, D.W. Graham,
A review of phosphorus removal technologies and their
applicability to small-scale domestic wastewater treatment
systems, Front. Environ. Sci., 6 (2018) 8–12.
- C.M. Mehta, W.O. Khunjar, V. Nguyen, S. Tait, D.J. Batstone,
Technologies to recover nutrients from waste streams: a critical
review, Crit. Rev. Env. Sci. Technol., 45 (2015) 385–427.
- M. Marchetto, Technologies used in the wastewater treatment
for nutrient removal, Int. J. Waste Resour., 3 (2013) 2–5.
- H.U. Xiang, X.I.E. Li, S. Hojae, S. Zhang, Y. Dianhai, Biological
nutrient removal in a full scale anoxic/anaerobic/aerobic/preanoxic-MBR plant for low C/N ratio municipal wastewater
treatment, Chin. J. Chem. Eng., 22 (2014) 447–454.
- D.-H. Jeong, Y. Cho, Y. Kim, K. Ahn, H.-M. Chung,
O. Kwon, A study on determination method of the compliance
concentration of effluent limitation from public sewage
treatment works in the Jinwee-stream watershed sewer system,
J. Korean Soc. Water Wastewater, 29 (2015) 493–502.
- R. Kaur, S.P. Wani, A.K. Singh, K. Lal, Wastewater Production,
Treatment and Use in India, National Report Presented at
the 2nd Regional Workshop on Safe Use of Wastewater in
Agriculture, 2012.
- D.R. Marlow, D.J. Beale, S. Burn, A pathway to a more sustainable
water sector: sustainability-based asset management, Water Sci.
Technol., 61 (2010) 1245–1255.
- D.R. Marlow, M. Moglia, S. Cook, D.J. Beale, Towards
sustainable urban water management: a critical reassessment,
Water Res., 47 (2013) 7150–7161.
- D. Cordell, A. Rosemarin, J.J. Schröder, A.L. Smit, Towards
global phosphorus security: a systems framework for phosphorus
recovery and reuse options, Chemosphere, 84 (2011)
747–758.
- P.M. Poortvliet, L. Sanders, J. Weijma, J.R. De Vries, Acceptance
of new sanitation: the role of end-users pro-environmental
personal norms and risk and benefit perceptions, Water Res.,
131 (2018) 90–99.
- E.K. Tetteh, S. Rathilal, M. Chetty, E.K. Armah, D. Asante-Sackey,
Treatment of Water and Wastewater for Reuse and Energy
Generation-Emerging Technologies, Water and Wastewater
Treatment, IntechOpen, 2019.
- VEOLIA, Wastewater Treatment Chemicals – What, Why and
When?, 2017. Available at: https://www.veoliawatertechnologies.
co.uk/news/wastewater-treatment-chemicals-what-why-andwhen
[Accessed: 15-Dec-2019].
- A.Y.A. Mohamed, A.E.O. Elnour, M.A.A. Khadam, Physiochemical
treatment of wastewater utilizing polyaluminum
chloride for Khartoum North wastewater effluent, Univ.
Khartoum Eng. J., 7 (2017) 1–7.
- C.P. Gerba, I.L. Pepper, Municipal Wastewater Treatment, 2019,
pp. 393–418.
- I.-T. Kim, Y.-E. Lee, Y.-S. Yoo, W. Jeong, Y.-H. Yoon, D.-C. Shin,
Y. Jeong, Development of a combined aerobic–anoxic and
methane oxidation bioreactor system using mixed methanotrophs
and biogas for wastewater denitrification, Water,
11 (2019) 1377.
- J. Patel, 4-Step Wastewater Sludge Treatment Process,
2018. Available at: https://www.wateronline.com/doc/
step-wastewater-sludge-treatment-process-0001 [Accessed:
25-Nov-2019].
- Archis Ambulkar, Sludge Treatment and Disposal, 2019.
Available at: https://www.britannica.com/technology/waste
water-treatment/Sludge-treatment-and-disposal [Accessed:
20-Nov-2019].
- Condorchem Envitech, Processes and Technologies for Sludge
Treatment, 2017. Available at: https://blog-en.condorchem.com/
sludge-treatment/#.XeRy8VczaUk [Accessed: 30-Nov-2019].
- L.S. Tang, D.H. Zheng, Z.L. Zhao, L.J. Zhang, Dehydration of
sludge using the polyethylene glycol solution dialysis method
and the mechanism of dehydration, J. Environ. Sci. Health., Part
A, 53 (2018) 1199–1206.
- S. Moran, An Applied Guide to Water and Effluent Treatment
Plant Design, Butterworth-Heinemann, 2018.
- I. Blankenburg, Sludge De-Watering, 2005.
- B. Ji, K. Yang, H. Wang, Impacts of poly-aluminum chloride
addition on activated sludge and the treatment efficiency of
SBR, Desal. Water Treat., 54 (2015) 2376–2381.
- S. Guo, F. Qu, A. Ding, L. Bai, G. Li, H.H. Ngo, W. Guo, H. Liang,
Effects of poly aluminum chloride dosing positions on the
performance of a pilot scale anoxic/oxic-membrane bioreactor
(A/O-MBR), Water Sci. Technol., 72 (2015) 689–695.