References

  1. C.L. Grady Jr., G.T. Daigger, N.G. Love, C.D. Filipe, Biological Wastewater Treatment, CRC Press, Boca Raton, FL, 2011.
  2. Metcalf and Eddy, Wastewater Engineering: Treatment and Resource Recovery, 5th ed., McGraw-Hill, New York, NY, 2014.
  3. M. Clara, B. Strenn, O. Gans, E. Martinez, N. Kreuzinger, H. Kroiss, Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants, Water Res., 39 (2005) 4797–4807.
  4. S. Velling, A. Mashirin, K. Hellat, T. Tenno, Non-steady response of BOD biosensor for the determination of biochemical oxygen demand in wastewater, J. Environ. Monit., 13 (2011) 95–100.
  5. S. Jouanneau, L. Recoules, M.J. Durand, A. Boukabache, V. Picot, Y. Primault, A. Lakel, M. Sengelin, B. Barillon, G. Thouand, Methods for assessing biochemical oxygen demand (BOD): a review, Water Res., 49 (2014) 62–82.
  6. K. Riedel, G. Kunze, A. König, Microbial Sensors on a Respiratory Basis for Wastewater Monitoring, N.N. Dutta, F. Hammar, K. Haralampidis, N.G. Karanth, A. König, S.H. Krishna, G. Kunze, E. Nagy, B. Orlich, A.E. Osbourn, K.S.M.S. Raghavarao, K. Riedel, G.C. Sahoo, R. Schomäcker, N.D. Srinivas, M. Trojanowska, Eds., History and Trends in Bioprocessing and Biotransformation, Vol. 75, Advances in Biochemical Engineering/Biotechnology, Springer, Berlin, Heidelberg, 2002, pp. 81–118.
  7. I. Skoczko, J. Struk-Sokołowska, P. Ofman, Seasonal changes in nitrogen, phosphorus, BOD and COD removal in Bystre wastewater treatment plant, J. Ecol. Eng., 18 (2017) 185–191.
  8. L. Metcalf, Wastewater Engineering: Treatment and Reuse, Metcalf & Eddy Inc., New York, NY, 2003.
  9. L. Benedetti, J. Langeveld, A. Comeau, L. Corominas, G. Daigger, C. Martin, P.S. Mikkelsen, L. Vezzaro, S. Weijers, P.A. Vanrolleghem, Modelling and monitoring of integrated urban wastewater systems: review on status and perspectives, Water Sci. Technol., 68 (2013) 1203–1215.
  10. H. Melcer, Monitoring and modeling VOCs in wastewater facilities, Environ. Sci. Technol., 28 (1994) 328A–335A.
  11. V. Ranković, J. Radulović, I. Radojević, A. Ostojić, L. Čomić, Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia, Ecol. Modell., 221 (2010) 1239–1244.
  12. S. Dahiya, B. Singh, S. Gaur, V.K. Garg, H.S. Kushwaha, Analysis of groundwater quality using fuzzy synthetic evaluation, J. Hazard. Mater., 147 (2007) 938–946.
  13. S. Areerachakul, Comparison of ANFIS and ANN for estimation of biochemical oxygen demand parameter in surface water, Int. J. Chem. Biol. Eng., 6 (2012) 286–290.
  14. H.M. Azamathulla, A.A. Ghani, S.Y. Fei, ANFIS-based approach for predicting sediment transport in clean sewer, Appl. Soft Comput., 12 (2012) 1227–1230.
  15. M. Savic, I. Mihajlovic, Z. Zivkovic, An ANFIS-based air quality model for prediction of SO2 concentration in urban area, Serb. J. Manage., 8 (2013) 25–38.
  16. A.M. Ahmed, S.M.A. Shah, Application of adaptive neurofuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River, J. King Saud Univ., 29 (2017) 237–243.
  17. M. Bagheri, S.A. Mirbagheri, M. Ehteshami, Z. Bagheri, A.M. Kamarkhani, Analysis of variables affecting mixed liquor volatile suspended solids and prediction of effluent quality parameters in a real wastewater treatment plant, Desal. Water Treat., 57 (2016) 21377–21390.
  18. M. Bagheri, S.A. Mirbagheri, A.M. Kamarkhani, Z. Bagheri, Modeling of effluent quality parameters in a submerged membrane bioreactor with simultaneous upward and downward aeration treating municipal wastewater using hybrid models, Desal. Water Treat., 57 (2016) 8068–8089.
  19. J.P. Suen, J.W. Eheart, Evaluation of neural networks for modeling nitrate concentrations in rivers, J. Water Resour. Plann. Manage., 129 (2003) 505–510.
  20. Statistic Solutions, 2019. Available at: https://www. statisticssolutions.com/independent-and-dependent-variables/ (retrieved August, 2019).
  21. Regression Definition, 2019. Available at: https://www. investopedia.com/terms/r/regression.asp (retrieved August, 2019).
  22. A.E. Tümer, S. Edebalı, Prediction of Wastewater Treatment Plant Performance Using Multilinear Regression and Artificial Neural Networks, International Symposium on Innovations in Intelligent SysTems and Applications (INISTA), IEEE, Madrid, Spain, 2015, pp. 1–5.
  23. L. Qiuhua, S. Lihai, G. Tingjing, Z. Lei, O. Teng, H. Guojia, C. Chuan, L. Cunxiong, Use of principal component scores in multiple linear regression models for simulation of chlorophyll-a and phytoplankton abundance at a karst deep reservoir, southwest of China, Acta Ecol. Sin., 34 (2014) 72–78.
  24. V. Uyak, K. Ozdemir, I. Toroz, Multiple linear regression modeling of disinfection by-products formation in Istanbul drinking water reservoirs, Sci. Total Environ., 378 (2007) 269–280.
  25. M.C. Maniquiz, S. Lee, L.H. Kim, Multiple linear regression models of urban runoff pollutant load and event mean concentration considering rainfall variables, J. Environ. Sci., 22 (2010) 946–952.
  26. N. Basant, S. Gupta, A. Malik, K.P. Singh, Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water: a case study, Chemom. Intell. Lab. Syst., 104 (2010) 172–180.
  27. H.Z. Abyaneh, Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters, J. Environ. Health Sci. Eng., 12 (2014) 1–8.
  28. Google Earth, Pro 7.3.2.5776 (retrieved February, 2020).
  29. Climate Data. Available at: https://en.climate-data.org/ (retrieved August, 2019).
  30. V. Bewick, L. Cheek, J. Ball, Statistics review 7: correlation and regression, Crit. Care, 7 (2003) 451–459.
  31. D.C. Montgomery, E.A. Peck, G.G. Vining, Introduction to Linear Regression Analysis, Vol. 821, John Wiley & Sons, Hoboken, NJ, 2012.
  32. A. Vijayan, G.S. Mohan, Prediction of effluent treatment plant performance in a diary industry using artificial neural network technique, J. Civ. Environ. Eng., 6 (2016) 1–4.
  33. F.S. Mjalli, S. Al-Asheh, H.E. Alfadala, Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance, J. Environ. Manage., 83 (2007) 329–338.
  34. O.T. Bakia, E. Arasb, U.O. Akdemirc, B. Yilmaza, Biochemical oxygen demand prediction in wastewater treatment plant by using different regression analysis models, Desal. Water Treat., 157 (2019) 79–89.
  35. Z. Al-Ghazawi, K. Bani-Hani, R. Alawneh, Testing and Evaluation of the Use of Digital Image Analysis and Artificial Neural Networks in Monitoring Wastewater Quality, 9th Annual International Conference on Civil Engineering, 24–27 June 2019, Athens, Greece.