References
- C.L. Grady Jr., G.T. Daigger, N.G. Love, C.D. Filipe, Biological
Wastewater Treatment, CRC Press, Boca Raton, FL, 2011.
- Metcalf and Eddy, Wastewater Engineering: Treatment and
Resource Recovery, 5th ed., McGraw-Hill, New York, NY, 2014.
- M. Clara, B. Strenn, O. Gans, E. Martinez, N. Kreuzinger,
H. Kroiss, Removal of selected pharmaceuticals, fragrances and
endocrine disrupting compounds in a membrane bioreactor
and conventional wastewater treatment plants, Water Res.,
39 (2005) 4797–4807.
- S. Velling, A. Mashirin, K. Hellat, T. Tenno, Non-steady
response of BOD biosensor for the determination of biochemical
oxygen demand in wastewater, J. Environ. Monit., 13 (2011)
95–100.
- S. Jouanneau, L. Recoules, M.J. Durand, A. Boukabache, V. Picot,
Y. Primault, A. Lakel, M. Sengelin, B. Barillon, G. Thouand,
Methods for assessing biochemical oxygen demand (BOD):
a review, Water Res., 49 (2014) 62–82.
- K. Riedel, G. Kunze, A. König, Microbial Sensors on a
Respiratory Basis for Wastewater Monitoring, N.N. Dutta,
F. Hammar, K. Haralampidis, N.G. Karanth, A. König,
S.H. Krishna, G. Kunze, E. Nagy, B. Orlich, A.E. Osbourn,
K.S.M.S. Raghavarao, K. Riedel, G.C. Sahoo, R. Schomäcker,
N.D. Srinivas, M. Trojanowska, Eds., History and Trends in
Bioprocessing and Biotransformation, Vol. 75, Advances in
Biochemical Engineering/Biotechnology, Springer, Berlin,
Heidelberg, 2002, pp. 81–118.
- I. Skoczko, J. Struk-Sokołowska, P. Ofman, Seasonal changes
in nitrogen, phosphorus, BOD and COD removal in Bystre
wastewater treatment plant, J. Ecol. Eng., 18 (2017) 185–191.
- L. Metcalf, Wastewater Engineering: Treatment and Reuse,
Metcalf & Eddy Inc., New York, NY, 2003.
- L. Benedetti, J. Langeveld, A. Comeau, L. Corominas,
G. Daigger, C. Martin, P.S. Mikkelsen, L. Vezzaro, S. Weijers,
P.A. Vanrolleghem, Modelling and monitoring of integrated
urban wastewater systems: review on status and perspectives,
Water Sci. Technol., 68 (2013) 1203–1215.
- H. Melcer, Monitoring and modeling VOCs in wastewater
facilities, Environ. Sci. Technol., 28 (1994) 328A–335A.
- V. Ranković, J. Radulović, I. Radojević, A. Ostojić, L. Čomić,
Neural network modeling of dissolved oxygen in the Gruža
reservoir, Serbia, Ecol. Modell., 221 (2010) 1239–1244.
- S. Dahiya, B. Singh, S. Gaur, V.K. Garg, H.S. Kushwaha, Analysis
of groundwater quality using fuzzy synthetic evaluation,
J. Hazard. Mater., 147 (2007) 938–946.
- S. Areerachakul, Comparison of ANFIS and ANN for estimation
of biochemical oxygen demand parameter in surface water,
Int. J. Chem. Biol. Eng., 6 (2012) 286–290.
- H.M. Azamathulla, A.A. Ghani, S.Y. Fei, ANFIS-based approach
for predicting sediment transport in clean sewer, Appl. Soft
Comput., 12 (2012) 1227–1230.
- M. Savic, I. Mihajlovic, Z. Zivkovic, An ANFIS-based air quality
model for prediction of SO2 concentration in urban area, Serb.
J. Manage., 8 (2013) 25–38.
- A.M. Ahmed, S.M.A. Shah, Application of adaptive neurofuzzy
inference system (ANFIS) to estimate the biochemical
oxygen demand (BOD) of Surma River, J. King Saud Univ.,
29 (2017) 237–243.
- M. Bagheri, S.A. Mirbagheri, M. Ehteshami, Z. Bagheri,
A.M. Kamarkhani, Analysis of variables affecting mixed liquor
volatile suspended solids and prediction of effluent quality
parameters in a real wastewater treatment plant, Desal. Water
Treat., 57 (2016) 21377–21390.
- M. Bagheri, S.A. Mirbagheri, A.M. Kamarkhani, Z. Bagheri,
Modeling of effluent quality parameters in a submerged
membrane bioreactor with simultaneous upward and
downward aeration treating municipal wastewater using
hybrid models, Desal. Water Treat., 57 (2016) 8068–8089.
- J.P. Suen, J.W. Eheart, Evaluation of neural networks for
modeling nitrate concentrations in rivers, J. Water Resour.
Plann. Manage., 129 (2003) 505–510.
- Statistic Solutions, 2019. Available at: https://www.
statisticssolutions.com/independent-and-dependent-variables/
(retrieved August, 2019).
- Regression Definition, 2019. Available at: https://www.
investopedia.com/terms/r/regression.asp (retrieved August,
2019).
- A.E. Tümer, S. Edebalı, Prediction of Wastewater Treatment
Plant Performance Using Multilinear Regression and Artificial
Neural Networks, International Symposium on Innovations in
Intelligent SysTems and Applications (INISTA), IEEE, Madrid,
Spain, 2015, pp. 1–5.
- L. Qiuhua, S. Lihai, G. Tingjing, Z. Lei, O. Teng, H. Guojia,
C. Chuan, L. Cunxiong, Use of principal component scores
in multiple linear regression models for simulation of
chlorophyll-a and phytoplankton abundance at a karst deep
reservoir, southwest of China, Acta Ecol. Sin., 34 (2014) 72–78.
- V. Uyak, K. Ozdemir, I. Toroz, Multiple linear regression
modeling of disinfection by-products formation in Istanbul
drinking water reservoirs, Sci. Total Environ., 378 (2007)
269–280.
- M.C. Maniquiz, S. Lee, L.H. Kim, Multiple linear regression
models of urban runoff pollutant load and event mean
concentration considering rainfall variables, J. Environ. Sci.,
22 (2010) 946–952.
- N. Basant, S. Gupta, A. Malik, K.P. Singh, Linear and nonlinear
modeling for simultaneous prediction of dissolved oxygen and
biochemical oxygen demand of the surface water: a case study,
Chemom. Intell. Lab. Syst., 104 (2010) 172–180.
- H.Z. Abyaneh, Evaluation of multivariate linear regression
and artificial neural networks in prediction of water quality
parameters, J. Environ. Health Sci. Eng., 12 (2014) 1–8.
- Google Earth, Pro 7.3.2.5776 (retrieved February, 2020).
- Climate Data. Available at: https://en.climate-data.org/
(retrieved August, 2019).
- V. Bewick, L. Cheek, J. Ball, Statistics review 7: correlation and
regression, Crit. Care, 7 (2003) 451–459.
- D.C. Montgomery, E.A. Peck, G.G. Vining, Introduction to
Linear Regression Analysis, Vol. 821, John Wiley & Sons,
Hoboken, NJ, 2012.
- A. Vijayan, G.S. Mohan, Prediction of effluent treatment
plant performance in a diary industry using artificial neural
network technique, J. Civ. Environ. Eng., 6 (2016) 1–4.
- F.S. Mjalli, S. Al-Asheh, H.E. Alfadala, Use of artificial neural
network black-box modeling for the prediction of wastewater
treatment plants performance, J. Environ. Manage., 83 (2007)
329–338.
- O.T. Bakia, E. Arasb, U.O. Akdemirc, B. Yilmaza, Biochemical
oxygen demand prediction in wastewater treatment plant by
using different regression analysis models, Desal. Water Treat.,
157 (2019) 79–89.
- Z. Al-Ghazawi, K. Bani-Hani, R. Alawneh, Testing and
Evaluation of the Use of Digital Image Analysis and Artificial
Neural Networks in Monitoring Wastewater Quality, 9th
Annual International Conference on Civil Engineering, 24–27
June 2019, Athens, Greece.