References

  1. V.W. Truesdale, Evidence and potential implications of exponential tails to concentration versus time plots for the batch dissolution of calcite, Aquat. Geochem., 21 (2015) 365–396.
  2. M.D. Vinson, A. Luttge, Multiple length-scale kinetics: an integrated study of calcite dissolution rates and strontium inhibition, Am. J. Sci., 305 (2005) 119–146.
  3. R.A. Berner, J.W. Morse, Dissolution kinetics of calcium carbonate in sea water IV. Theory of calcite dissolution, Am. J. Sci., 274 (1974) 108–134.
  4. R.S. Arvidsen, I.E. Ertan, J.E. Amonette, A. Luttge, Variation in calcite dissolution rates: a fundamental problem?, Geochim. Cosmochim. Acta, 67 (2003) 1623–1634.
  5. J.W. Morse, R.S. Arvidsen, The dissolution kinetics of major sedimentary carbonate minerals, Earth Sci. Rev., 58 (2002) 51–84.
  6. A.L. Petrou, A. Terzidaki, Calcium carbonate and calcium sulfate precipitation, crystallization and dissolution: evidence for the activated steps and the mechanisms from the enthalpy and entropy of activation values, Chem. Geol., 381 (2014) 144–153.
  7. S. Alsadaie, I.M. Mujtaba, Crystallization of calcium carbonate and magnesium hydroxide in the heat exchangers of oncethrough multistage flash (MSF-OT) desalination process, Comput. Chem. Eng., 122 (2018) 293–305.
  8. L. Brečević, A.E. Nielsen, Solubility of amorphous calcium carbonate, J. Cryst. Growth, 98 (1989) 504–510.
  9. M.H. Evans, M. Polanyi, Some applications of the transition state method to the calculation of reaction velocities, especially in solution, Trans. Faraday. Soc., 31 (1935) 875–894.
  10. H. Eyring, The activated complex in chemical reactions, J. Chem. Phys., 3 (1935) 107–115.
  11. L. Eisenlohr, K. Meteva, F. Gabrovšek, W. Dreybrodt, The inhibiting action of intrinsic impurities in natural calcium carbonate minerals to their dissolution kinetics in aqueous H2O-CO2 solutions, Geochim. Cosmochim. Acta, 63 (1999) 989–1002.
  12. T. Ilyina, R.E. Zeebe, Detection and projection of carbonate dissolution in the water column and deep-sea sediments due to ocean acidification, Geophys. Res. Lett., 39 (2012), doi: 10.1029/2012GL051272.
  13. H. Shemer, D. Hasson, R. Semiat, State-of-the-art review on post-treatment technologies, Desalination, 356 (2015) 285–293.
  14. D. Hasson, O. Bendrihem, Modeling remineralization of desalinated water by limestone dissolution, Desalination, 190 (2006) 189–200.
  15. M. Hernández-Suárez, Guideline for the Remineralisation of Desalinated Waters, Canary Islands Water Center, Santa Cruz de Tenerife, 2010.
  16. G. Ozair, J.T. Gutierrez, Caustic soda injection in potabilization process, J. Sustainable Water Environ. Syst., 2 (2011) 25–36.
  17. J. Colombani, The alkaline dissolution rate of calcite, J. Phys. Chem. Lett., 122 (2016) 29285–29297.
  18. E.L. Sjöberg, A fundamental equation for calcite dissolution kinetics, Geochim. Cosmochim. Acta, 40 (1976) 441–447.
  19. E.L. Sjöberg, D. Rickard, The influence of experimental design on the rate of calcite dissolution, Geochim. Cosmochim. Acta, 47 (1983) 2281–2285.
  20. C. Peng, J.P. Crawshaw, G.C. Maitland, J.P.M. Trusler, Kinetics of calcite dissolution in CO2-saturated water at temperatures between (323 and 373) K and pressures up to 13.8 MPa, Chem. Geol., 403 (2015) 74–85.
  21. L.L. Bircumshaw, A.C. Riddiford, Transport control in heterogeneous reactions, Q. Rev. Chem. Soc., 6 (1952) 157–185.
  22. I.A. Maxwell, B.R. Morrison, D.H. Napper, R.G. Gilbert, Entry of free radicals into latex particles in emulsion polymerisation, Macromolecules, 24 (1991)1629–1640.
  23. C.M. Fellows, R.D. Murison, G.T. Russell, Model discrimination of radical desorption kinetics in emulsion polymerisation, Macromol. Theory Simul., 20 (2011) 425–432.
  24. R.M. Pytkowicz, Chemical solution of carbonate in sea water, Am. Zool., 9 (1969) 673–679.
  25. M.N. Vlasov, M.C. Kelley, Eddy diffusion coefficients and their upper limits based on application of the similarity theory, Ann. Geophys., 33 (2015) 857–864.
  26. R.A. Robinson, C.L. Chia, The diffusion coefficient of calcium chloride in aqueous solution at 25°, J. Am. Chem. Soc., 74 (1952) 2776–2777.
  27. T. Munk, D. Kane, D.M. Yebra, The Effects of Corrosion and Fouling on the Performance of Ocean-Going Vessels: A Naval Architectural Perspective, C. Hellio, D.M. Yebra, Eds., Advances in Marine Antifouling Coatings and Technologies, Woodhead Publishing Series in Metals and Surface Engineering, Cambridge, UK, 2009, pp. 148–176.
  28. T.J. Black, Viscous Drag Reduction Examined in the Light of a New Model of Wall Turbulence, In: Proceedings of the Symposium on Viscous Drag Reduction held at the LTV Research Center, Dallas, TX, 1968, pp. 383–402.
  29. P. Aagaard, H.C. Helgeson, Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions, I. Theoretical considerations., Am. J. Sci., 282 (1982) 237–285.
  30. Y. Levenson, S. Emmanuel, Pore-scale heterogeneous reaction rates on a dissolving limestone surface, Geochim. Cosmochim. Acta, 119 (2013) 188–197.
  31. T.A. De Assis, F.D.A. Aarão Reis, Dissolution of minerals with rough surfaces, Geochim. Cosmochim. Acta, 228 (2018) 27–41
  32. A. Lassin, L. André, N. Devau, A. Lach, T. Beuvier, A. Gibaud, S. Gaboreau, M. Azaroual, Dynamics of calcium carbonate formation: geochemical modelling of a two-step mechanism, Geochim. Cosmochim. Acta, 240 (2018) 236–254.
  33. M. Hong, H.H. Teng, Implications of solution chemistry effects: direction specific-restraints on the step kinetics of calcite growth, Geochim. Cosmochim. Acta, 141 (2014) 228–239.
  34. K. Yuan, V. Starchenko, S.S. Lee, V. De Andrade, D. Gursoy, N.C. Sturchio, P. Fenter, Mapping three-dimensional dissolution rates of calcite microcrystals: effects of surface curvature and dissolved metal ions, ACS Earth Space Chem., 3 (2019) 833–843.
  35. J. Colombani, Pitfalls in the measurement of the true dissolution kinetics of soft minerals, Procedia Earth Planet. Sci., 7 (2013) 179–182.
  36. W. Dreybrodt, J. Lauckner, Z. Lui, U. Svennson, D. Buhmann, The kinetics of the reaction CO2 + H2O → H+ + HCO3 as one of the rate limiting steps for the dissolution of calcite in the system H2O–CO2–CaCO3, Geochim. Cosmochim. Acta, 60 (1996) 3375–3381.
  37. G.K. Batchelor, Diffusion in a field of homogeneous turbulence. II. The relative motion of particles, Math. Proc. Cambridge Philos. Soc., 48 (1952) 345–362.
  38. L.F. Richardson, Atmospheric diffusion shown on a distance/ neighbor graph, Proc. R. Soc. London Ser. A, 110 (1926) 709–739.
  39. F. Jousse, T. Jongen, W. Agterof, A method to dynamically estimate the diffusion boundary layer from local velocity conditions in laminar flows, Int. J. Heat Mass Transfer, 48 (2005) 1563–1571.
  40. C.R. Blue, A. Giuffre, S. Mergelsberg, N. Han, J.J. De Yoreo, P.M. Dove, Chemical and physical controls on the transformation of amorphous calcium carbonate into crystalline CaCO3 polymorphs, Geochim. Cosmochim. Acta, 196 (2017) 179–196.
  41. L.M. Hamm, A.J. Giuffre, N. Han, J. Tao, D. Wang, J.J. De Yoreo, P.M. Dove, Reconciling disparate views of template-directed nucleation through measurement of calcite nucleation kinetics and binding energies, Proc. Natl. Acad. Sci. USA, 111 (2014) 1304–1309.
  42. M. Kellermeier, A. Picker, A. Kempter, H. Cölfen, D. Gebauer, A straightforward treatment of activity in aqueous CaCO3 solutions and the consequences for nucleation theory, Adv. Mater., 26 (2014) 752–757.
  43. C. Rodriguez-Navarro, K. Kudłacz, O. Cizer, E. Ruiz- Agudo, Formation of amorphous calcium carbonate and its transformation into mesostructured calcite, Cryst. Eng. Comm., 17 (2015) 58–72.
  44. D. Gebauer, A. Völkel, H. Cölfen, Stable prenucleation calcium carbonate clusters, Science, 322 (2008) 1819–1822.
  45. M. Wolthers, D. Di Tommaso, Z. Du, N.H. de Leeuw, Variations in calcite growth kinetics with surface topography: molecular dynamic simulations and process-based growth kinetics modelling, Cryst. Eng. Comm., 15 (2013) 5506–5514.
  46. Table of Diffusion Coefficients, Available at: http://www.aqion. de/site/194 (accessed May 28, 2019).
  47. A.A. Noyes, W.R. Whitney, The rate of solution of solid substances in their own solutions, J. Am. Chem. Soc., 19 (1897) 930–934.
  48. P. Moulin, H. Roques, Zeta potential measurement of calcium carbonate, J. Colloid Interface Sci., 261 (2003) 115–126.
  49. D. Al Mahrouqi, J. Vinogradov, M.D. Jackson, Zeta potential of artificial and natural calcite in aqueous solution, Adv. Colloid Interface Sci., 240 (2017) 60–76.
  50. R.S. Arvidsen, M. Collier, K.J. Davis, M.D. Vinson, J.E. Amonette, A. Luttge, Magnesium inhibition of calcite dissolution kinetics, Geochim. Cosmochim. Acta, 70 (2006) 583–594.
  51. R.A. Berner, The role of magnesium in the crystal growth of calcite and aragonite from seawater, Geochim. Cosmochim. Acta, 39 (1975) 489–494.
  52. M. Hänchen, V. Prigiobbe, R. Baciocchi, M. Mazzotti, Precipitation in the Mg-carbonate system-effects of temperature and CO2 pressure, Chem. Eng. Sci., 63 (2008) 1012–1028.
  53. A. Stefansson, P. Benezeth, J. Schott, Potentiometric and spectrophotometric study of the stability of magnesium carbonate and bicarbonate ion pairs to 150°C and aqueous inorganic carbon speciation and magnesite solubility, Geochim. Cosmochim. Acta, 138 (2014) 21–31.
  54. F.C. Cadena, W.S. Midkiff, G.A. O’Connor, The calcium carbonate ion-pair as a limit to hardness removal, J. Am. Water Works Assn., 66 (1974) 524–526.
  55. J.E. Greenwood, V.W. Truesdale, A.R. Rendell, Biogenic silica dissolution in seawater - in vitro chemical kinetics, Prog. Oceanogr., 48 (2001) 1–23.
  56. P. Cubillas, S. Köhler, P. Manuel, C. Chaïrat, E.H. Oelkers, Experimental determination of the dissolution rates of calcite, aragonite, and bivalves, Chem. Geol., 216 (2005) 59–77.