References
- V.W. Truesdale, Evidence and potential implications of
exponential tails to concentration versus time plots for the batch
dissolution of calcite, Aquat. Geochem., 21 (2015) 365–396.
- M.D. Vinson, A. Luttge, Multiple length-scale kinetics: an
integrated study of calcite dissolution rates and strontium
inhibition, Am. J. Sci., 305 (2005) 119–146.
- R.A. Berner, J.W. Morse, Dissolution kinetics of calcium
carbonate in sea water IV. Theory of calcite dissolution, Am. J.
Sci., 274 (1974) 108–134.
- R.S. Arvidsen, I.E. Ertan, J.E. Amonette, A. Luttge, Variation in
calcite dissolution rates: a fundamental problem?, Geochim.
Cosmochim. Acta, 67 (2003) 1623–1634.
- J.W. Morse, R.S. Arvidsen, The dissolution kinetics of major
sedimentary carbonate minerals, Earth Sci. Rev., 58 (2002)
51–84.
- A.L. Petrou, A. Terzidaki, Calcium carbonate and calcium
sulfate precipitation, crystallization and dissolution: evidence
for the activated steps and the mechanisms from the enthalpy
and entropy of activation values, Chem. Geol., 381 (2014)
144–153.
- S. Alsadaie, I.M. Mujtaba, Crystallization of calcium carbonate
and magnesium hydroxide in the heat exchangers of oncethrough
multistage flash (MSF-OT) desalination process,
Comput. Chem. Eng., 122 (2018) 293–305.
- L. Brečević, A.E. Nielsen, Solubility of amorphous calcium
carbonate, J. Cryst. Growth, 98 (1989) 504–510.
- M.H. Evans, M. Polanyi, Some applications of the transition
state method to the calculation of reaction velocities, especially
in solution, Trans. Faraday. Soc., 31 (1935) 875–894.
- H. Eyring, The activated complex in chemical reactions,
J. Chem. Phys., 3 (1935) 107–115.
- L. Eisenlohr, K. Meteva, F. Gabrovšek, W. Dreybrodt, The
inhibiting action of intrinsic impurities in natural calcium
carbonate minerals to their dissolution kinetics in aqueous
H2O-CO2 solutions, Geochim. Cosmochim. Acta, 63 (1999)
989–1002.
- T. Ilyina, R.E. Zeebe, Detection and projection of carbonate
dissolution in the water column and deep-sea sediments due
to ocean acidification, Geophys. Res. Lett., 39 (2012), doi:
10.1029/2012GL051272.
- H. Shemer, D. Hasson, R. Semiat, State-of-the-art review on
post-treatment technologies, Desalination, 356 (2015) 285–293.
- D. Hasson, O. Bendrihem, Modeling remineralization of
desalinated water by limestone dissolution, Desalination, 190
(2006) 189–200.
- M. Hernández-Suárez, Guideline for the Remineralisation of
Desalinated Waters, Canary Islands Water Center, Santa Cruz
de Tenerife, 2010.
- G. Ozair, J.T. Gutierrez, Caustic soda injection in potabilization
process, J. Sustainable Water Environ. Syst., 2 (2011) 25–36.
- J. Colombani, The alkaline dissolution rate of calcite, J. Phys.
Chem. Lett., 122 (2016) 29285–29297.
- E.L. Sjöberg, A fundamental equation for calcite dissolution
kinetics, Geochim. Cosmochim. Acta, 40 (1976) 441–447.
- E.L. Sjöberg, D. Rickard, The influence of experimental design
on the rate of calcite dissolution, Geochim. Cosmochim. Acta,
47 (1983) 2281–2285.
- C. Peng, J.P. Crawshaw, G.C. Maitland, J.P.M. Trusler, Kinetics
of calcite dissolution in CO2-saturated water at temperatures
between (323 and 373) K and pressures up to 13.8 MPa, Chem.
Geol., 403 (2015) 74–85.
- L.L. Bircumshaw, A.C. Riddiford, Transport control in
heterogeneous reactions, Q. Rev. Chem. Soc., 6 (1952) 157–185.
- I.A. Maxwell, B.R. Morrison, D.H. Napper, R.G. Gilbert, Entry
of free radicals into latex particles in emulsion polymerisation,
Macromolecules, 24 (1991)1629–1640.
- C.M. Fellows, R.D. Murison, G.T. Russell, Model discrimination
of radical desorption kinetics in emulsion polymerisation,
Macromol. Theory Simul., 20 (2011) 425–432.
- R.M. Pytkowicz, Chemical solution of carbonate in sea water,
Am. Zool., 9 (1969) 673–679.
- M.N. Vlasov, M.C. Kelley, Eddy diffusion coefficients and their
upper limits based on application of the similarity theory, Ann.
Geophys., 33 (2015) 857–864.
- R.A. Robinson, C.L. Chia, The diffusion coefficient of calcium
chloride in aqueous solution at 25°, J. Am. Chem. Soc., 74 (1952)
2776–2777.
- T. Munk, D. Kane, D.M. Yebra, The Effects of Corrosion
and Fouling on the Performance of Ocean-Going Vessels: A
Naval Architectural Perspective, C. Hellio, D.M. Yebra, Eds.,
Advances in Marine Antifouling Coatings and Technologies,
Woodhead Publishing Series in Metals and Surface Engineering,
Cambridge, UK, 2009, pp. 148–176.
- T.J. Black, Viscous Drag Reduction Examined in the Light
of a New Model of Wall Turbulence, In: Proceedings of the
Symposium on Viscous Drag Reduction held at the LTV
Research Center, Dallas, TX, 1968, pp. 383–402.
- P. Aagaard, H.C. Helgeson, Thermodynamic and kinetic
constraints on reaction rates among minerals and aqueous
solutions, I. Theoretical considerations., Am. J. Sci., 282 (1982)
237–285.
- Y. Levenson, S. Emmanuel, Pore-scale heterogeneous reaction
rates on a dissolving limestone surface, Geochim. Cosmochim.
Acta, 119 (2013) 188–197.
- T.A. De Assis, F.D.A. Aarão Reis, Dissolution of minerals with
rough surfaces, Geochim. Cosmochim. Acta, 228 (2018) 27–41
- A. Lassin, L. André, N. Devau, A. Lach, T. Beuvier, A. Gibaud,
S. Gaboreau, M. Azaroual, Dynamics of calcium carbonate
formation: geochemical modelling of a two-step mechanism,
Geochim. Cosmochim. Acta, 240 (2018) 236–254.
- M. Hong, H.H. Teng, Implications of solution chemistry effects:
direction specific-restraints on the step kinetics of calcite
growth, Geochim. Cosmochim. Acta, 141 (2014) 228–239.
- K. Yuan, V. Starchenko, S.S. Lee, V. De Andrade, D. Gursoy,
N.C. Sturchio, P. Fenter, Mapping three-dimensional dissolution
rates of calcite microcrystals: effects of surface curvature and
dissolved metal ions, ACS Earth Space Chem., 3 (2019) 833–843.
- J. Colombani, Pitfalls in the measurement of the true dissolution
kinetics of soft minerals, Procedia Earth Planet. Sci., 7 (2013)
179–182.
- W. Dreybrodt, J. Lauckner, Z. Lui, U. Svennson, D. Buhmann,
The kinetics of the reaction CO2 + H2O → H+ + HCO3‒ as one of
the rate limiting steps for the dissolution of calcite in the system
H2O–CO2–CaCO3, Geochim. Cosmochim. Acta, 60 (1996)
3375–3381.
- G.K. Batchelor, Diffusion in a field of homogeneous turbulence.
II. The relative motion of particles, Math. Proc. Cambridge
Philos. Soc., 48 (1952) 345–362.
- L.F. Richardson, Atmospheric diffusion shown on a distance/
neighbor graph, Proc. R. Soc. London Ser. A, 110 (1926)
709–739.
- F. Jousse, T. Jongen, W. Agterof, A method to dynamically
estimate the diffusion boundary layer from local velocity
conditions in laminar flows, Int. J. Heat Mass Transfer, 48 (2005)
1563–1571.
- C.R. Blue, A. Giuffre, S. Mergelsberg, N. Han, J.J. De
Yoreo, P.M. Dove, Chemical and physical controls on the
transformation of amorphous calcium carbonate into
crystalline CaCO3 polymorphs, Geochim. Cosmochim. Acta,
196 (2017) 179–196.
- L.M. Hamm, A.J. Giuffre, N. Han, J. Tao, D. Wang, J.J. De Yoreo,
P.M. Dove, Reconciling disparate views of template-directed
nucleation through measurement of calcite nucleation kinetics
and binding energies, Proc. Natl. Acad. Sci. USA, 111 (2014)
1304–1309.
- M. Kellermeier, A. Picker, A. Kempter, H. Cölfen, D. Gebauer,
A straightforward treatment of activity in aqueous CaCO3
solutions and the consequences for nucleation theory, Adv.
Mater., 26 (2014) 752–757.
- C. Rodriguez-Navarro, K. Kudłacz, O. Cizer, E. Ruiz-
Agudo, Formation of amorphous calcium carbonate and its
transformation into mesostructured calcite, Cryst. Eng. Comm., 17
(2015) 58–72.
- D. Gebauer, A. Völkel, H. Cölfen, Stable prenucleation calcium
carbonate clusters, Science, 322 (2008) 1819–1822.
- M. Wolthers, D. Di Tommaso, Z. Du, N.H. de Leeuw, Variations
in calcite growth kinetics with surface topography: molecular
dynamic simulations and process-based growth kinetics
modelling, Cryst. Eng. Comm., 15 (2013) 5506–5514.
- Table of Diffusion Coefficients, Available at: http://www.aqion.
de/site/194 (accessed May 28, 2019).
- A.A. Noyes, W.R. Whitney, The rate of solution of solid
substances in their own solutions, J. Am. Chem. Soc., 19 (1897)
930–934.
- P. Moulin, H. Roques, Zeta potential measurement of calcium
carbonate, J. Colloid Interface Sci., 261 (2003) 115–126.
- D. Al Mahrouqi, J. Vinogradov, M.D. Jackson, Zeta potential of
artificial and natural calcite in aqueous solution, Adv. Colloid
Interface Sci., 240 (2017) 60–76.
- R.S. Arvidsen, M. Collier, K.J. Davis, M.D. Vinson, J.E. Amonette,
A. Luttge, Magnesium inhibition of calcite dissolution kinetics,
Geochim. Cosmochim. Acta, 70 (2006) 583–594.
- R.A. Berner, The role of magnesium in the crystal growth of
calcite and aragonite from seawater, Geochim. Cosmochim.
Acta, 39 (1975) 489–494.
- M. Hänchen, V. Prigiobbe, R. Baciocchi, M. Mazzotti,
Precipitation in the Mg-carbonate system-effects of temperature
and CO2 pressure, Chem. Eng. Sci., 63 (2008) 1012–1028.
- A. Stefansson, P. Benezeth, J. Schott, Potentiometric and
spectrophotometric study of the stability of magnesium
carbonate and bicarbonate ion pairs to 150°C and aqueous
inorganic carbon speciation and magnesite solubility, Geochim.
Cosmochim. Acta, 138 (2014) 21–31.
- F.C. Cadena, W.S. Midkiff, G.A. O’Connor, The calcium
carbonate ion-pair as a limit to hardness removal, J. Am. Water
Works Assn., 66 (1974) 524–526.
- J.E. Greenwood, V.W. Truesdale, A.R. Rendell, Biogenic silica
dissolution in seawater - in vitro chemical kinetics, Prog.
Oceanogr., 48 (2001) 1–23.
- P. Cubillas, S. Köhler, P. Manuel, C. Chaïrat, E.H. Oelkers,
Experimental determination of the dissolution rates of calcite,
aragonite, and bivalves, Chem. Geol., 216 (2005) 59–77.