References

  1. O.E. Abdel Salam, N.A. Reiad, M.M. El-Shafei, A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents, J. Adv. Res., 2 (2011) 297–303.
  2. Environmental Brazilian Laws, Portaria do Ministério da Saúde, Diário Oficial da União, seção 3, Portaria n° 5, 2017.
  3. H. Tounsadi, A. Khalidi, A. Machrouhi, M. Farnane, R. Elmoubarki, A. Elhalil, M. Sadiq, N. Barka, Highly efficient activated carbon from Glebionis coronaria L. biomass: optimization of preparation conditions and heavy metals removal using experimental design approach, J. Environ. Chem. Eng., 4 (2016) 4549–4564.
  4. F.W. Sousa, S.A. Moreira, A.G. Oliveira, R.M. Cavalcante, R.F. Nascimento, M.F. Rosa, Uso da casca de coco verde como adsorbente na remoção de metais tóxicos, Quim. Nova, 30 (2007) 1153–1157.
  5. E. Menya, P.W. Olupot, H. Storz, M. Lubwama, Y. Kiros, Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review, Chem. Eng. Res. Des., 129 (2018) 271–296.
  6. J.M.V. Nabais, C.E.C. Laginhas, P.J.M. Carrott, M.M.L. Ribeiro Carrott, Production of activated carbons from almond shell, Fuel Process. Technol., 92 (2011) 234–240.
  7. J. Zhou, Y. Liu, X. Zhou, J. Ren, C. Zhong, Magnetic multiporous bio-adsorbent modified with amino siloxane for fast removal of Pb(II) from aqueous solution, Appl. Surf. Sci., 427 (2018) 976–985.
  8. I.P.d.P. Cansado, C.R. Belo, P.A.M. Mourão, Valorisation of Tectona grandis tree sawdust through the production of high activated carbon for environment applications, Bioresour. Technol., 249 (2018) 328–333.
  9. M. Wiśniewska, P. Nowicki, A. Nosal-Wiercińska, Adsorption of poly(acrylic acid) on the surface of microporous activated carbon obtained from cherry stones, Colloids Surf., A, 514 (2017) 137–145.
  10. S. Hokkanen, A. Bhatnagar, M. Sillanpää, A review on modification methods to cellulose-based adsorbents to improve adsorption capacity, Water Res., 91 (2016) 156–173.
  11. A.P. Vieira, S.A.A. Santana, C.W.B. Bezerra, H.A.S. Silva, J.C.P. de Melo, E.C. da Silva Filho, C. Airoldi, Copper sorption from aqueous solutions and sugar cane spirits by chemically modified babassu coconut (Orbignya speciosa) mesocarp, Chem. Eng. J., 161 (2010) 99–105.
  12. K. Björklund, L.Y. Li, Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge, J. Environ. Manage., 197 (2017) 490–497.
  13. S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater., 97 (2003) 219–243.
  14. S.K. Hubadillah, M.H.D. Othman, Z. Harun, A.F. Ismail, M.A. Rahman, J. Jaafar, A novel green ceramic hollow fiber membrane (CHFM) derived from rice husk ash as combined adsorbent-separator for efficient heavy metals removal, Ceram. Int., 43 (2017) 4716–4720.
  15. Suhas, V.K. Gupta, P.J.M. Carrott, R. Singh, M. Chaudhary, S. Kushwaha, Cellulose: a review as natural, modified and activated carbon adsorbent, Bioresour. Technol., 216 (2016) 1066–1076.
  16. B. Tiryaki, E. Yagmur, A. Banford, Z. Aktas, Comparison of activated carbon produced from natural biomass and equivalent chemical compositions, J. Anal. Appl. Pyrolysis, 105 (2014) 276–283.
  17. P.R. Aranda, I. Llorens, E. Perino, I. De Vito, J. Raba, Removal of arsenic(V) ions from aqueous media by adsorption on multiwall carbon nanotubes thin film using XRF technique, Environ. Nanotechnol. Monit. Manage., 5 (2016) 21–26.
  18. R. Malik, S. Dahiya, S. Lata, An experimental and quantum chemical study of removal of utmostly quantified heavy metals in wastewater using coconut husk: a novel approach to mechanism, Int. J. Biol. Macromol., 98 (2017) 139–149.
  19. F.Q. An, R.Y. Wu, M. Li, T.P. Hu, J.F. Gao, Z.G. Yuan, Adsorption of heavy metal ions by iminodiacetic acid functionalized D301 resin: kinetics, isotherms and thermodynamics, React. Funct. Polym., 118 (2017) 42–50.
  20. M.A.C. Moreira, M.E. Payret Arrúa, A.C. Antunes, T.E.R. Fiuza, B.J. Costa, P.H. Weirich Neto, S.R.M. Antunes, Characterization of Syagrus romanzoffiana oil aiming at biodiesel production, Ind. Crops Prod., 48 (2013) 57–60.
  21. S.L. Falasca, C.M. del Fresno, A. Ulberich, Possibilities for growing queen palm (Syagrus romanzoffiana) in Argentina as a biodiesel producer under semi-arid climate conditions, Int. J. Hydrogen Energy, 37 (2012) 14843–14848.
  22. M.C. Coimbra, N. Jorge, Proximate composition of guariroba (Syagrus oleracea), jerivá (Syagrus romanzoffiana) and macaúba (Acrocomia aculeata) palm fruits, Food Res. Int., 44 (2011) 2139–2142.
  23. INMETRO, Orientação Sobre Validação de Métodos Analíticos, DOQ – CGCRE, 2018, Brasil, p. 28.
  24. Associação Brasileira de Normas Técnicas (ABNT), NBR 10664 Águas – Determinação de Resíduos (Sólidos), Satandard n° 10664, 1989.
  25. H.P. Boehm, Some aspect of the surface chemistry of carbon blacks and other carbons, Carbon, 32 (1994) 759–769.
  26. M.V. de S. Pinto, D.L. da Silva and A.C.F. Saraiva, Obtenção e caracterização de carvão ativado de caroço de buriti (Mauritia flexuosa L. f.) para a avaliação do processo de adsorção de cobre (II), Acta Amaz., 43 (2013) 73–80.
  27. A. Abbas, M.A. Hussain, M. Sher, M.I. Irfan, M.N. Tahir, W. Tremel, S.Z. Hussain, I. Hussain, Design, characterization and evaluation of hydroxyethylcellulose based novel regenerable supersorbent for heavy metal ions uptake and competitive adsorption, Int. J. Biol. Macromol., 102 (2017) 170–180.
  28. T.D. Šoštarić, M.S. Petrović, F.T. Pastor, D.R. Lončarevićd, J.T. Petrovića, J.V. Milojkovića, M.D. Stojanovića, Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment, J. Mol. Liq., 259 (2018) 340–349.
  29. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
  30. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porus substances, J. Am. Chem. Soc., 73 (1951) 373–380.
  31. A.C.A. Lima, R.F. Nascimento, F.F. Sousa, J.M. Filho, A.C. Oliveira, Modified coconut shell fibers: a green and economical sorbent for the removal of anions from aqueous solutions, Chem. Eng. J., 185 (2012) 274–284.
  32. D.M. Ruthven, Principles of Adsorption and Adsorption Process, John Wiley & Sons, New York, NY, 1984.
  33. A.D. Luz, S.M.d.A.G.U. de Souza, C. da Luz, R.V.D.P. Rezende, A.A.U. de Souza, Multicomponent adsorption and desorption of BTX compounds using coconut shell activated carbon: experiments, mathematical modeling, and numerical simulation, Ind. Eng. Chem. Res., 52 (2013) 7896–7911.
  34. A. Shahbazi, H. Younesi, A. Badiei, Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column, Chem. Eng. J., 168 (2011) 505–518.
  35. B.E. Grimwood, F. Ashman, Coconut Palm Products; Their Processing in Developing Countries, Food & Agriculture Organization, Rome, 1975.
  36. F. Villacañas, M.F.R. Pereira, J.J.M. Órfão, J.L. Figueiredo, Adsorption of simple aromatic compounds on activated carbons, J. Colloid Interface Sci., 293 (2006) 128–136.
  37. Y. Zhu, P. Kolar, Investigation of adsorption of p-cresol on coconut shell-derived activated carbon, J. Taiwan Inst. Chem. Eng., 68 (2016) 138–146.
  38. S.J. Allen, G. Mckay, Adsorption isotherm models for basic dye adsorption by peat in singleand binary component systems, J. Colloid Interface Sci., 280 (2014) 322–333.
  39. C.B. Vidal, D.Q. Melo, G.S.C. Raulino, A.D. Luz, C. Luz, R.F. Nascimento, Multielement adsorption of metal ions using Tururi fibers (Manicaria Saccifera): experiments, mathematical modeling and numerical simulation, Desal. Water Treat., 57 (2015) 9001–9008.
  40. M.S. Sreekala, M.G. Kumaran, S. Thomas, Oil palm fibers: morphology, chemical composition, surface modification, and mechanical properties, J. Appl. Polym. Sci., 66 (1997) 821–835.
  41. X. He, X. Liu, B. Nie, D. Song, FTIR and Raman spectroscopy characterization of functional groups in various rank coals, Fuel, 206 (2017) 555–563.
  42. Z. Sun, L. Chai, Y. Shu, Q. Li, M. Liu, D. Qiu, Chemical bond between chloride ions and surface carboxyl groups on activated carbon, Colloids Surf., A, 530 (2017) 53–59.
  43. R.M. Silverstein, F.X. Webster, D.J. Kiemle, D.L. Bryce, Identificação Espectrométrica de Compostos Orgânicos, 8 ed., LTC, New York, NY, 2006.
  44. M. Baysal, A. Yürüm, B. Yıldız, Y. Yürüm, Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction, Int. J. Coal Geol., 163 (2016) 166–176.
  45. H. Song, G. Liu, J. Zhang, J. Wu, Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method, Fuel Process. Technol., 156 (2017) 454–460.
  46. F. Wang, Y. Pan, P. Cai, T. Guo, H. Xiao, Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent, Bioresour. Technol., 241 (2017) 482–490.
  47. S. Mohan, R. Gandhimathi, Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent, J. Hazard. Mater., 169 (2009) 351–359.
  48. V. Kumar, Y.K. Bhardwaj, K.P. Rawat, S. Sabharwal, Radiationinduced grafting of vinylbenzyltrimethylammonium chloride (VBT) onto cotton fabric and study of its anti-bacterial activities, Radiat. Phys. Chem., 73 (2005) 175–182.
  49. C. Appel, L.Q. Ma, R.D. Rhue, E. Kennelley, Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility, Geoderma, 113 (2003) 77–93.
  50. N. Singh, C. Balomajumder, Simultaneous removal of phenol and cyanide from aqueous solution by co-culture of strain immobilized onto coconut shell activated carbon, Desal. Water Treat., 57 (2016) 26136–26152.
  51. A.A.d.A. Alves, G.L.d.O. Ruiz, T.C.M. Nonato, L.C. Müller, M.L. Sens, Performance of the fixed-bed of granular activated carbon for the removal of pesticides from water supply, Environ. Technol., 40 (2019) 1977–1987.
  52. T.G. Kebede, A.A. Mengistie, S. Dube, T.T.I. Nkambule, M.M. Nindi, Study on adsorption of some common metal ions present in industrial effluents by Moringa stenopetala seed powder, J. Environ. Chem. Eng., 6 (2018) 1378–1389.
  53. L. Liu, S. Liu, H. Peng, Z. Yang, L. Zhao, A. Tang, Surface charge of mesoporous calcium silicate and its adsorption characteristics for heavy metal ion, Solid State Sci., 99 (2020) 106072.
  54. D. Huang, B. Xu, J. Wu, P.C. Brookes, J. Xu, Adsorption and desorption of phenanthrene by magnetic graphene nanomaterials from water: roles of pH, heavy metal ions and natural organic matter, Chem. Eng. J., 3768 (2019) 390–399.
  55. D.Q. de Melo, C.B. Vidal, T.C. Medeiros, G.S. Raulino, A. Dervanoski, M.C. Pinheiro, R.F. Nascimanto, Biosorption of metal ions using a low cost modified adsorbent (Mauritia flexuosa): experimental design and mathematical modeling, Environ. Technol., 37 (2016) 2157–2171.
  56. A.K. Meena, K. Kadirvelu, G.K. Mishraa, C. Rajagopal, P.N. Nagar, Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk, J. Hazard. Mater., 150 (2008) 619–625.
  57. S. Guiza, Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel, Ecol. Eng., 99 (2017) 134–140.
  58. N. Feng, X. Guo, S. Liang, Y. Zhu, J. Liu, Biosorption of heavy metals from aqueous solutions by chemically modified orange peel, J. Hazard. Mater., 185 (2011) 49–54.
  59. P.S. Kumar, S. Ramalingam, S.D. Kirupha, A. Murugesan, T. Vidhyadevi, S. Sivanesan, Adsorption behavior of nickel(II) onto cashew nut shell: equilibrium, thermodynamics, kinetics, mechanism and process design, Chem. Eng. J., 167 (2011) 122–131.
  60. P.S. Kumar, S. Ramalingam, V. Sathyaselvabala, S.D. Kirupha, S. Sivanesan, Removal of copper(II) ions from aqueous solution by adsorption using cashew nut shell, Desalination, 266 (2011) 63–71.
  61. B. Singha, S.K. Das, Biosorption of Cr(VI) ions from aqueous solutions: kinetics, equilibrium, thermodynamics and desorption studies, Colloids Surf., B, 84 (2011) 221–232.
  62. B. Singha, S.K. Das, Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes, Colloids Surf., B, 107 (2013) 97–106.
  63. R. Leyva-Ramos, L.A. Bernal-Jacome, I. Acosta-Rodriguez, Adsorption of cadmium(II) from aqueous solution on natural and oxidized corncob, Sep. Purif. Technol., 45 (2005) 41–49.
  64. M. Thirumavalavan, Y.L. Lai, L.C. Lin, J.F. Lee, Cellulose-based native and surface modified fruit peels for the adsorption of heavy metal ions from aqueous solution: Langmuir adsorption isotherms, J. Chem. Eng. Data, 55 (2010) 1186–1192.
  65. I. Langmuir, The adsorption of gases on glass, mica and platinum, J. Am. Chem. Soc., 345 (1914) 1361–1368.
  66. H. Freundlich, Über die Adsorption in Lösungen, Z. Phys. Chem., 57 (1906) 385–470.