References
- E. Vangelie, R. Campos, J. Luiz de Oliveira, L. Fernandes,
Fraceto, B. Singh, Polysaccharides as safer release systems for
agrochemicals, Agron. Sustainable Dev., 3 (2015) 47–66.
- A. Özkara, D. Akyıl, M. Konuk, Pesticides, Environmental
Pollution, and Health, Elsevier, 2016, doi: 10.5772/63094.
- A.K. Mishra, V.K. Chandiraseharan, N. Jose, T.D. Sudarsanam,
Chlorantraniliprole: an unusual insecticide poisoning in humans,
Indian. J. Crit. Care. Med., 20 (2016) 742–744.
- J. Bartlomiej, S. Troczka Martin, M. Williamson Linda, T.G. Emyr
Davies, Rapid selection for resistance to diamide insecticides
in Plutella xylostella via specific amino acid polymorphisms in
the ryanodine receptor, Neurotoxicology, 60 (2017) 224–233.
- Y. Liu, Y. Gao, G. Liang, L. Yanhui, Chlorantraniliprole as a
candidate pesticide used in combination with the attracticides
for lepidopteran moths, PLoS One, 12 (2017) 1–10.
- K. Dutta, M. Ali, A. Najam, R. Kumarand, A. Kumar,
Ameliorative effect of seed extract of Pterocarpus santalinus
on coragen induced haematological alterations and serum
biochemical changes in charles foster rats, J. Toxicol. Environ.
Health, 6 (2014) 194–202.
- H. Watson, Biological membranes, Essays Biochem., 59 (2015)
43–69.
- A. Catala, Lipid peroxidation modifies the assembly of
biological membranes the lipid whisker model, Front. Physiol.,
5 (2015) 1–4.
- O. Ganzenko, D. Huguenot, E.D. Van Hullebusch, G. Esposito,
M.A. Oturan, Electrochemical advanced oxidation and biological
processes for wastewater treatment: a review of the
combined approaches, Environ. Sci. Pollut. Res., 21 (2014)
8493–8524.
- Y. Feng, L. Yang, J. Liua, B.E. Logan, Electrochemical technologies
for wastewater treatment and resource reclamation, Environ.
Sci. Water Res. Technol., 2 (2016) 800–831.
- APHA, Standard Methods for the Examination for Water and
Wastewater, 19th ed., American Public Health Association,
Byrd Prepess Springfield, Washington DC, 1995.
- G. Vlyssides, D. Papaioannou, M. Loizidoy, P.K. Karlis,
A.A. Zorpas, Testing an electrochemical method for treatment
of textile dye wastewater, Waste Manage., 20 (2000) 569–574.
- Y.P. Feng, Z.H. Ni, H.M. Wang, J. Kasim, H.M. Fan, T. Yu,
Y.H. Wu, Z.X. Shen, Graphene thickness determination using
reflection and contrast spectroscopy, Nano Lett., 7 (2007) 27–58.
- G. Li, Y. Eva, Observation of landau levels of dirac fermions in
graphite, Nat. Phys., 3 (2007) 623–627.
- D.E. Kimbrough, I.H. Suffet, Electrochemical removal of
bromide and reduction of THM formation potential in drinking
water, Water Res., 36 (2002) 4902–4906.
- M. Siddiqui, W.Y. Zhai, G. Amy, C. Mysore, Bromate ion
removal by activated carbon, Water Res., 30 (1996) 1651–1660.
- W.J. Huang, Y.L. Cheng, Effect of characteristics of activated
carbon on removal of bromated, Sep. Purif. Technol., 59 (2008)
101–107.
- M.J. Kirists, V.L. Snoeyink, J.C. Kruithof, The reduction of
bromate by granular activated carbon, Water Res., 349 (2000)
4250–4260.
- M. Asami, T. Aizawa, T. Morioka, W. Nishijima, A. Tabata,
Y. Magara, Bromate removal during transition from new
granular activated carbon (GAC) to biological activated carbon
(BAC), Water Res., 33 (1999) 2797–2804.
- A. Avram, T. Frentiu, O. Horovitz, A. Mocanu, F. Goga, M.
Tomoaia-Cotisel, Hydroxyapatite for removal of heavy metals
from wastewater, Studi a ubb chemia., 4 (2017) 93–104.
- F. Guzman-Duque, C. Petrier, C. Pulgarin, G. Penuela,
R.A. Torres-Palma, Effects of sono chemical parameters and
inorganic ions during the sono chemical degradation of crystal
violet in water, Ultrason. Sonochem., 18 (2011) 440–446.
- N. Bishnupriya, S. Amruta, P. Rajkishore, K. Misra, Comprehensive
understanding of the kinetics and mechanism of
fluoride removal over a potent nanocrystalline hydroxyapatite
surface, ACS Omega, 2 (2017) 8118–8128.
- M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni,
R. El Hamri, A. Taitai, Removal of fluoride from aqueous
solution by adsorption on hydroxyapatite (HAp) using response
surface methodology, J. Saudi Chem. Soc., 19 (2015) 603–615.
- W. Aili, L. Dong, Y. Hengbo, W. Huixiong, W. Yuji, R. Min,
J. Tingshun, C. Xiaonong, X. Yiqing, Size-controlled synthesis
of hydroxyapatite nanorods by chemical precipitation in the
presence of organic modifier, Mater. Sci. Eng., 61 (2007) 865–869.
- H. Zhou, F. Yu, Q. Zhu, J. Sun, F. Qin, L. Yu, J. Bao, Y.Y. Orcid,
S. Chen, Z. Ren, Water splitting by electrolysis at high current
densities under 1.6 V, Energy Environ. Sci., 11 (2018) 2858–2864.
- D. Shen, J. Ma, Y. Liu, C. Zhao, Treatment of high salinity
organic wastewater by membrane electrolysis, Earth Environ.
Sci., 128 (2018) 012–141.
- M. Muthukumar, M. Govidaraj, A. Muthusamy, G. Bhaskar Raju,
Comparative study of electrocoagulation and electrooxidation
processes for the degradation of ellagic acid from aqueous
solution, Sep. Sci. Technol., 46 (2011) 272–282.
- M. Govindaraj, M. Muthukumar, G. Bhaskar Raju,
Electrochemical oxidation of tannic acid contaminated
wastewater by RuO2/IrO2/TaO2–coated titanium and graphite
anodes, Environ. Technol., 31 (2010) 1613–1622.
- S. Hamzah, N.I. Yatim, M. Alias, A. Ali, N. Rasit, A. Abuhabib,
Extraction of hydroxyapatite from fish scales and its integration
with rice husk for ammonia removal in aquaculture
wastewater, Indones. J. Chem., 19 (2019) 1019–1030.
- A. Stefanova, S. Ayata, A. Erem, S. Ernst, H. Baltruschat,
Mechanistic studies on boron-doped diamond: oxidation of
small organic molecules, Electrochim. Acta., 110 (2013) 560–569.
- T. Ogawa, M. Takeuchi, Y. Kajikawa, Analysis of trends and
emerging technologies in water electrolysis research based on
a computational method: a comparison with fuel cell research,
Sustainability, 10 (2018) 1–24.
- F.L. Guzman-Duque, R.E. Palma-Goyes, I. Gonzalez,
G. Penuela, R.A. Torres-Palma, Relationship between anode
material supporting electrolyte and current density during
electrochemical degradation of organic compounds in water,
J. Hazard. Mater., 278 (2014) 221–226.
- M. Panizza, G. Cerisola, Direct and mediated anodic oxidation
of organic pollutants, Chem. Rev., 109 (2009) 6541–6569.
- R.E. Palma-Goyes, F.L. Guzman-Duque, G. Penuela, I. Gonzalez,
J.L. Nava, R.A. Torres-Palma, Electrochemical degradation of
crystal violet with BDD electrodes: effect of electrochemical
parameters and identification of organic by-products, Chemosphere,
81 (2010) 26–32.
- S. Lidia, Claudia, N.K.A. Santosh, Comparative study on
oxidation of disperse dyes by electrochemical process, ozone,
hypochlorite, and Fenton reagent, Water Res., 35 (2001)
2129–2136.
- W. Vielstich, A. Lamn, H.A. Gasteiger, Handbook of Fuel Cells:
Fundamentals, Technology and Applications, Four Volumes,
John Wiley, New York, 2003.
- G. Bhaskar Raju, M. Thalamadai Karuppiah, S.S. Latha,
S. Parvathy, S. Prabhakar, Treatment of wastewater from synthetic
textile industry by electrocoagulation - electrooxidation,
Chem. Eng., 144 (2008) 51–58.
- H. Zhang, J. Wu, Z. Wang, D. Zhang, Electrochemical oxidation
of crystal violet in the presence of hydrogen peroxide,
J. Chem. Technol. Biotechnol., 85 (2010) 1436–1444.
- S. Hsu, P.C. Singer, Removal of bromide and natural organic
matter by anion exchange, Water Res., 44 (2010) 2133–2140.
- M. Shi, C. Guo, J. Li, J. Li, L. Zhang, X. Wang, Y. Ju, J. Zheng,
X. Li, Removal of bromide from water by adsorption on
nanostructured-Bi2O3, J. Nanosci. Nanotechnol., 17 (2017)
6951–6956.
- Y.-Q. Zhang, Q.-P. Wu, J.-M. Zhang, X.-H. Yang, Removal of
bromide and bromate from drinking water using granular
activated carbon, J. Water Health, 13 (2015) 73–78.
- P. Perez-Rodriguez, C. Maqueira Gonzalez, Y. Bennani,
L.C. Rietveld, M. Zeman, A.H.M. Smets, Electrochemical
oxidation of organic pollutants powered by a silicon-based
solar cell, ACS Omega, 3 (2018) 14392–14398.
- D.R. Vieira Guelfi, F. Gozzi, I. Sires, E. Brillas, A. Machulek Jr.,
S.C. de Oliveira, Degradation of the insecticide propoxur by
electrochemical advanced oxidation processes using a borondoped
diamond/air-diffusion cell, Environ. Sci. Pollut. Res.,
24 (2017) 6083–6095.
- S. Garcia-Segura, J. Keller, E. Brillas, J. Radjenovic, Removal
of organic contaminants from secondary effluents by anodic
oxidation with a boron-dipped diamond anode as tertiary
treatment, J. Hazard. Mater., 283 (2015) 551–557.
- B.K. Korbahti, P. Demirbuken, Electrochemical oxidation of
resorcinol in aqueous medium using boron-doped diamond
anode: reaction kinetics and process optimization with response
surface methodology, Front. Chem., 5 (2017) 75–90.
- H. Zazoua, N. Oturan, H. Zhang, M. Hamdani, M.A. Oturan,
Comparative study of electrochemical oxidation of herbicide
2,4,5-T: kinetics, parametric optimization, and mineralization
pathway, Sustainable Environ. Res., 27 (2017) 15–23.
- H. Luo, C. Li, X. Sun, S. Chen, B.B. Ding, L. Yang, Ultraviolet
assists persulfate mediated anodic oxidation of organic
pollutant, J. Electroanal. Chem., 799 (2017) 393–398.
- A.D. Hiwarkar, S. Singh, V.C. Srivastava, C. Thakur,
I.D. Mall, S.L. Lo, Electro-chemical mineralization of recalcitrant
indole by platinum-coated titanium electrode: multi-response
optimization, mechanistic and sludge disposal study, Int. J.
Environ. Sci. Technol., 15 (2018) 349–360.