References

  1. G. Nazari, H. Abolghasemi, M. Esmaieli, Batch adsorption of cephalexin antibiotic from aqueous solution by walnut shellbased activated carbon, J. Taiwan Inst. Chem. Eng., 58 (2016) 357–365.
  2. A. Gulkowska, H.W. Leung, M.K. So, S. Taniyasu, N. Yamashita, L.W.Y. Yeung, B.J. Richardson, A.P. Lei, J.P. Giesy, P.K.S. Lam, Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China, Water Res., 42 (2008) 395–403.
  3. Q.Q. Zhang, A. Jia, Y. Wan, H. Liu, K.P. Wang, H. Peng, Z.M. Dong, J.Y. Hu, Occurrences of three classes of antibiotics in a natural river basin: association with antibiotic-resistant Escherichia coli, Environ. Sci. Technol., 48 (2014) 14317–14325.
  4. I. Michael, L. Rizzo, C.S. McArdell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot, D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review, Water Res., 47 (2013) 957–995.
  5. L. Rizzo, C. Manaia, C. Merlin, T. Schwartz, C. Dagot, M.C. Ploy, I. Michael, D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review, Sci. Total Environ., 447 (2013) 345–360.
  6. A. Seidmohammadi, R. Amiri, J. Faradmal, M. Lili, G. Asgari, UVA-LED assisted persulfate/nZVI and hydrogen peroxide/nZVI for degrading 4-chlorophenol in aqueous solutions, Korean J. Chem. Eng., 35 (2018) 694–701.
  7. N.H. Tran, H.J. Chen, M. Reinhard, F.J. Mao, K.Y.-H. Gin, Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes, Water Res., 104 (2016) 461–472.
  8. F. Lüddeke, S. Heß, C. Gallert, J. Winter, H. Güde, H. Löffler, Removal of total and antibiotic resistant bacteria in advanced wastewater treatment by ozonation in combination with different filtering techniques, Water Res., 69 (2015) 243–251.
  9. B. Kamarehie, J. Mohamadian, S.A. Mousavi, G. Asgari, Y.D. Shahamat, Aniline degradation from aqueous solution using electro/Fe2+/peroxydisulphate process, Desal. Water Treat., 80 (2017) 337–343.
  10. M.M. Amin, F. Teimouri, M. Sadani, M.A. Karami, Application of enhanced nZnO photocatalytic process with ultrasonic wave in formaldehyde degradation from aqueous solution, Desal. Water Treat., 57 (2016) 9455–9464.
  11. Y.-H. Chuang, A. Szczuka, F. Shabani, J. Munoz, R. Aflaki, S.D. Hammond, W.A. Mitch, Pilot-scale comparison of microfiltration/reverse osmosis and ozone/biological activated carbon with UV/hydrogen peroxide or UV/free chlorine AOP treatment for controlling disinfection byproducts during wastewater reuse, Water Res., 152 (2019) 215–225.
  12. X.C. Liu, Y.Y. Zhou, J.C. Zhang, L. Luo, Y. Yang, H.L. Huang, H. Peng, L. Tang, Y. Mu, Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: mechanism study and research gaps, Chem. Eng. J., 347 (2018) 379–397.
  13. T.H. de Oliveira Norte, R.B.P. Marcelino, F.H.A. Medeiros, R.P.L. Moreira, C.C. Amorim, R.M. Lago, Ozone oxidation of β-lactam antibiotic molecules and toxicity decrease in aqueous solution and industrial wastewaters heavily contaminated, Ozone Sci. Eng., 40 (2018) 385–391.
  14. B. Kamarehie, A. Jafari, M. Ghaderpoori, M.A. Karami, K. Mousavi, A. Ghaderpoury, Catalytic ozonation process using PAC/γ-Fe2O3 to Alizarin Red S degradation from aqueous solutions: a batch study, Chem. Eng. Commun., 206 (2019) 898–908.
  15. Y. Mizukoshi, Effects of sonication on photocatalytic reforming of aqueous glycerol solution, Ultrason. Sonochem., 51 (2019) 182–185.
  16. Q.Q. Liu, J.Y. Shen, X.F. Yang, T.R. Zhang, H. Tang, 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics, Appl. Catal., B, 232 (2018) 562–573.
  17. X.X. He, A.A. de la Cruz, D.D. Dionysiou, Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254 nm activation of hydrogen peroxide, persulfate and peroxymonosulfate, J. Photochem. Photobiol., A, 251 (2013) 160–166.
  18. M. Ghaderpoori, M.H. Dehghani, Investigating the removal of linear alkyl benzene sulfonate from aqueous solution by ultraviolet irradiation and hydrogen peroxide process, Desal. Water Treat., 57 (2016) 15208–15212.
  19. L.V. de Souza Santos, A.M. Meireles, L.C. Lange, Degradation of antibiotics norfloxacin by Fenton, UV and UV/H2O2, J. Environ. Manage., 154 (2015) 8–12.
  20. R. Ebrahimi, M. Mohammadi, A. Maleki, A. Jafari, B. Shahmoradi, R. Rezaee, M. Safari, H. Daraei, O. Giahi, K. Yetilmezsoy, S.H. Puttaiah, Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid in aqueous solution using Mn-doped ZnO/graphene nanocomposite under LED radiation, J. Inorg. Organomet. Polym Mater., 30 (2020) 923–934.
  21. Z. Cao, X. Liu, J. Xu, J. Zhang, Y. Yang, J.L. Zhou, X.H. Xu, G.V. Lowry, Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron, Environ. Sci. Technol., 51 (2017) 11269–11277.
  22. Y.P. Ji, Z.C. Pan, D.H. Yuan, B. Lai, Advanced treatment of the antibiotic production wastewater by ozone/zero‐valent iron process, Clean–Soil Air Water, 46 (2018) 1700666.
  23. F. Kord Mostafapour, E. Bazrafshan, D. Belark, N. Khoshnamvand, Survey of photo-catalytic degradation of ciprofloxacin antibiotic using copper oxide nanoparticles (UV/CuO) in aqueous environment, J. Rafsanjan Univ. Med. Sci., 15 (2016) 307–318.
  24. C. Bojer, J. Schöbel, T. Martin, M. Ertl, H. Schmalz, J. Breu, Clinical wastewater treatment: photochemical removal of an anionic antibiotic (ciprofloxacin) by mesostructured high aspect ratio ZnO nanotubes, Appl. Catal., B, 204 (2017) 561–565.
  25. E.S. Elmolla, M. Chaudhuri, Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis, Desalination, 252 (2010) 46–52.
  26. F. Asadi, A. Dargahi, A. Almasi, E. Moghofe, Red Reactive 2 dye removal from aqueous solutions by pumice as a low-cost and available adsorbent, Arch. Hyg. Sci., 5 (2016) 145–152.
  27. Z.Q. Fang, X.Q. Qiu, J.H. Chen, X.H. Qiu, Degradation of metronidazole by nanoscale zero-valent metal prepared from steel pickling waste liquor, Appl. Catal., B, 100 (2010) 221–228.
  28. A. Zuorro, M. Fidaleo, M. Fidaleo, R. Lavecchia, Degradation and antibiotic activity reduction of chloramphenicol in aqueous solution by UV/H2O2 process, J. Environ. Manage., 133 (2014) 302–308.
  29. Y. Deng, R.Z. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
  30. Y. Yang, Y. Cao, J. Jiang, X.L. Lu, J. Ma, S.Y. Pang, J. Li, Y.Z. Liu, Y. Zhou, C.T. Guan, Comparative study on degradation of propranolol and formation of oxidation products by UV/H2O2 and UV/persulfate (PDS), Water Res., 149 (2019) 543–552.
  31. M. Kaladhar, K.V. Subbaiah, C.S. Rao, K.N. Rao, Application of Taguchi approach and utility concept in solving the multiobjective problem when turning AISI 202 austenitic stainless steel, J. Eng. Sci. Technol. Rev., 4 (2011) 1791–2377.
  32. A. Fakhri, S. Behrouz, Comparison studies of adsorption properties of MgO nanoparticles and ZnO–MgO nanocomposites for linezolid antibiotic removal from aqueous solution using response surface methodology, Process Saf. Environ., 94 (2015) 37–43.
  33. T.T. Wu, J.D. Englehardt, A new method for removal of hydrogen peroxide interference in the analysis of chemical oxygen demand, Environ. Sci. Technol., 46 (2012) 2291–2298.
  34. J. Zolgharnein, M. Rastgordani, Optimization of simultaneous removal of binary mixture of indigo carmine and methyl orange dyes by cobalt hydroxide nano-particles through Taguchi method, J. Mol. Liq., 262 (2018) 405–414.
  35. M.R. Sohrabi, A. Khavaran, S. Shariati, S. Shariati, Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design, Arabian J. Chem., 10 (2017) S3523–S3531.
  36. H.T. Elbalkiny, A.M. Yehia, S.M. Riad, Y.S. Elsaharty, Removal and tracing of cephalosporins in industrial wastewater by SPE-HPLC: optimization of adsorption kinetics on mesoporous silica nanoparticles, J. Anal. Sci. Technol., 10 (2019) 2093–3371.
  37. WEF, APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA), Washington, DC, USA, 2005.
  38. A. Seid-Mohammadi, M. Bahrami, S. Omari, F. Asadi, Removal of cephalexin from aqueous solutions using magnesium oxide/ granular activated carbon hybrid photocatalytic process, Avicenna J. Environ. Health Eng., 6 (2019) 51–59.
  39. H. Azarpira, M. Sadani, M. Abtahi, N. Vaezi, S. Rezaei, Z. Atafar, S.M. Mohseni, M. Sarkhosh, M. Ghaderpoori, H. Keramati, R.H. Pouya, A. Akbari, V. Fanai, Photo-catalytic degradation of triclosan with UV/iodide/ZnO process: performance, kinetic, degradation pathway, energy consumption and toxicology, J. Photochem. Photobiol., A, 371 (2019) 423–432.
  40. M. Massoudinejad, H. Keramati, M. Ghaderpoori, Investigation of photo-catalytic removal of arsenic from aqueous solutions using UV/H2O2 in the presence of ZnO nanoparticles, Chem. Eng. Commun., (2019) 1–11.
  41. R. Ebrahimi, K. Hossienzadeh, A. Maleki, R. Ghanbari, R. Rezaee, M. Safari, B. Shahmoradi, H. Daraei, A. Jafari, K. Yetilmezsoy, S.H. Puttaiah, Effects of doping zinc oxide nanoparticles with transition metals (Ag, Cu, Mn) on photocatalytic degradation of Direct Blue 15 dye under UV and visible light irradiation, J. Environ. Health Sci., 17 (2019) 479–492.
  42. A. Babuponnusami, K. Muthukumar, Advanced oxidation of phenol: a comparison between Fenton, electro-Fenton, sonoelectro- Fenton and photo-electro-Fenton processes, Chem. Eng. J., 183 (2012) 1–9.
  43. H. Yang, L.Y. Mei, P.C. Wang, J. Genereux, Y.S. Wang, B. Yi, C.T. Au, L.M. Dang, P.Y. Feng, Photocatalytic degradation of norfloxacin on different TiO2−X polymorphs under visible light in water, RSC Adv., 7 (2017) 45721–45732.
  44. G.Z. Kyzas, K.A. Matis, Nanoadsorbents for pollutants removal: a review, J. Mol. Liq., 203 (2015) 159–168.
  45. A. Seid-Mohammadi, G. Asgarai, Z. Ghorbanian, A. Dargahi, The removal of cephalexin antibiotic in aqueous solutions by ultrasonic waves/hydrogen peroxide/nickel oxide nanoparticles (US/H2O2/NiO) hybrid process, Sep. Sci. Technol., 55 (2020) 1–11.
  46. A.H. Mahvi, A. Maleki, R. Rezaee, M. Safari, Reduction of humic substances in water by application of ultrasound waves and ultraviolet irradiation, Iran. J. Environ. Health, 6 (2009) 233–240.
  47. A. Panji, L.U. Simha, B.M. Nagabhushana, Heavy metals removal by nickel-oxide nanoparticles synthesised by lemon juice extract, Int. J. Eng. Manage. Res., 6 (2016) 287–291.
  48. M. Zarei, A.R. Khataee, R. Ordikhani-Seyedlar, M. Fathinia, Photoelectro-Fenton combined with photocatalytic process for degradation of an azo dye using supported TiO2 nanoparticles and carbon nanotube cathode: neural network modeling, Electrochim. Acta, 55 (2010) 7259–7265.
  49. G. Moussavi, A.A. Aghapour, K. Yaghmaeian, The degradation and mineralization of catechol using ozonation catalyzed with MgO/GAC composite in a fluidized bed reactor, Chem. Eng. J., 249 (2014) 302–310.
  50. D. Shahidi, R. Roy, A. Azzouz, Advances in catalytic oxidation of organic pollutants – prospects for thorough mineralization by natural clay catalysts, Appl. Catal., B, 174 (2015) 277–292.
  51. R. Kaplan, B. Erjavec, G. Dražić, J. Grdadolnik, A. Pintar, Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants, Appl. Catal., B, 181 (2016) 465–474.
  52. L. Rizzo, S. Meric, D. Kassinos, M. Guida, F. Russo, V. Belgiorno, Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays, Water Res., 43 (2009) 979–988.
  53. M. Rahmani, M. Kaykhaii, M. Sasani, Application of Taguchi L16 design method for comparative study of ability of 3A zeolite in removal of Rhodamine B and Malachite green from environmental water samples, Spectrochim. Acta, Part A, 188 (2018) 164–169.
  54. M. Dehghani, S. Behzadi, M.S. Sekhavatjou, Optimizing Fenton process for the removal of amoxicillin from the aqueous phase using Taguchi method, Desal. Water Treat., 57 (2016) 6604–6613.
  55. S. Varala, A. Kumari, B. Dharanija, S.K. Bhargava, R. Parthasarathy, B. Satyavathi, Removal of thorium (IV) from aqueous solutions by deoiled karanja seed cake: optimization using Taguchi method, equilibrium, kinetic and thermodynamic studies, J. Environ. Chem. Eng., 4 (2016) 405–417.
  56. J.L. Wang, L.J. Xu, Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application, Crit. Rev. Env. Sci. Technol., 42 (2012) 251–325.
  57. P. Fernández‐Castro, M. Vallejo, M.F. San Román, I. Ortiz, Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species, J. Chem. Technol. Biotechnol., 90 (2015) 796–820.
  58. D.A. Coledam, M.M.S. Pupo, B.F. Silva, A.J. Silva, K.I.B. Eguiluz, G.R. Salazar-Banda, J.M. Aquino, Electrochemical mineralization of cephalexin using a conductive diamond anode: a mechanistic and toxicity investigation, Chemosphere, 168 (2017) 638–647.
  59. V.T. Gawande, K.G. Bothara, A.M. Marathe, Stress studies and identification of degradation products of cephalexin using LC–PDA and LC–MS/MS, Chromatographia, 80 (2017) 1545–1552.
  60. O.R.S. da Rocha, R.F. Dantas, W.J. do Nascimento Júnior, Y. Fujiwara, M.M.M.B. Duarte, J.P. da Silva, Kinetic study and modelling of cephalexin removal from aqueous solution by advanced oxidation processes through artificial neural networks, Desal. Water Treat., 92 (2017) 72–79.
  61. M.R. Samarghandi, A.R. Rahmani, M.T. Samadi, M. Kiamanesh, G. Azarian, Degradation of pentachlorophenol in aqueous solution by the UV/ZrO2/H2O2 photocatalytic process, Avicenna J. Environ. Health Eng., 2 (2015) 4761–4761.
  62. S.G. Michael, I. Michael-Kordatou, S. Nahim-Granados, M.I. Polo-López, J. Rocha, A.B. Martínez-Piernas, P. Fernández-Ibáñez, A. Agüera, C.M. Manaia, D. Fatta-Kassinos, Investigating the impact of UV-C/H2O2 and sunlight/H2O2 on the removal of antibiotics, antibiotic resistance determinants and toxicity present in urban wastewater, Chem. Eng. J., 388 (2020) 124383.
  63. X.H. Liu, Y. Liu, S.Y. Lu, Z. Wang, Y.Q. Wang, G.D. Zhang, X.C. Guo, W. Guo, T.T. Zhang, B.D. Xi, Degradation difference of ofloxacin and levofloxacin by UV/H2O2 and UV/PS (persulfate): efficiency, factors and mechanism, Chem. Eng. J., 385 (2020) 123987.
  64. Y.W. Pan, Y. Zhang, M.H. Zhou, J.J. Cai, Y. Tian, Enhanced removal of antibiotics from secondary wastewater effluents by novel UV/pre-magnetized Fe0/H2O2 process, Water Res., 153 (2019) 144–159.
  65. H. Godini, A. Sheikhmohammadi, L. Abbaspour, R. Heydari, G.S. Khorramabadi, M. Sardar, Z. Mahmoudi, Energy consumption and photochemical degradation of Imipenem/Cilastatin antibiotic by process of UVC/Fe2+/H2O2 through response surface methodology, Optik, 182 (2019) 1194–1203.
  66. Q. Jiang, R.L. Zhu, Y.P. Zhu, Q.Z. Chen, Efficient degradation of cefotaxime by a UV+ferrihydrite/TiO2+H2O2 process: the important role of ferrihydrite in transferring photo‐generated electrons from TiO2 to H2O2, J. Chem. Technol. Biotechnol., 94 (2019) 2512–2521.
  67. R.C. Zhang, Y.K. Yang, C.-H. Huang, L. Zhao, P.Z. Sun, Kinetics and modeling of sulfonamide antibiotic degradation in wastewater and human urine by UV/H2O2 and UV/PDS, Water Res., 103 (2016) 283–292.