References

  1. M. Rabiet, A. Togola, F. Brissaud, J.L. Seidel, H. Budzinski, F. Elbaz-Poulichet, Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized Mediterranean catchment, Environ. Sci. Technol., 40 (2006) 5282–5288.
  2. L. Feng, N. Oturan, E.D. van Hullebusch, G. Esposito, M.A. Oturan, Degradation of anti-inflammatory drug ketoprofen by electro-oxidation: comparison of electro-Fenton and anodic oxidation processes, Environ. Sci. Pollut. Res. Int., 21 (2014) 8406–8416.
  3. F. Qi, W. Chu, B. Xu, Ozonation of phenacetin in associated with a magnetic catalyst CuFe2O4: the reaction and transformation, Chem. Eng. J., 262 (2015) 552–562.
  4. M. Xiao, Y. Zhang, Electro-catalytic oxidation of phenacetin with a three-dimensional reactor: degradation pathway and removal mechanism, Chemosphere, 152 (2016) 17–22.
  5. O.T. Komesli, M. Muz, M.S. Ak, S. Bakirdere, C.F. Gokcay, Occurrence, fate and removal of endocrine disrupting compounds (EDCs) in Turkish wastewater treatment plants, Chem. Eng. J., 277 (2015) 202–208.
  6. C.G. Daughton, I.S. Ruhoy, Lower-dose prescribing: minimizing “side effects” of pharmaceuticals on society and the environment, Sci. Total Environ., 443 (2013) 324–337.
  7. F. Qi, W. Chu, B. Xu, Comparison of phenacetin degradation in aqueous solutions by catalytic ozonation with CuFe2O4 and its precursor: surface properties, intermediates and reaction mechanisms, Chem. Eng. J., 284 (2016) 28–36.
  8. Y. Zhu, M. Wu, N. Gao, W. Chu, K. Li, S. Chen, Degradation of phenacetin by the UV/chlorine advanced oxidation process: kinetics, pathways, and toxicity evaluation, Chem. Eng. J., 335 (2018) 520–529.
  9. X.L. Peng, Y.G. Zhang, Y. Liu, Fabrication of a novel high photocatalytic Ag/Ag3PO4/P25 (TiO2) heterojunction catalyst for reducing electron-hole pair recombination and improving photo-corrosion, Mater. Res. Express, 6 (2019) 065515.
  10. S.J. Wang, C.C. Zhao, D.J. Wang, Y.Q. Wang, F. Liu, (OH)- O-center dot-initiated heterogeneous oxidation of methyl orange using an Fe–Ce/MCM-41 catalyst, RSC Adv., 6 (2016) 18800–18808.
  11. F.J. Real, F.J. Benitez, J.L. Acero, G. Roldan, Combined chemical oxidation and membrane filtration techniques applied to the removal of some selected pharmaceuticals from water systems, J. Environ. Sci. Health., Part A, 47 (2012) 522–533.
  12. S. Khuntia, M.K. Sinha, P. Singh, Theoretical and experimental investigation of the mechanism of the catalytic ozonation process by using a manganese-based catalyst, Environ. Technol., (2019) 1–8, doi: 10.1080/09593330.2019.1640800.
  13. K. El Hassani, D. Kalnina, M. Turks, B.H. Beakou, A. Anouar, Enhanced degradation of an azo dye by catalytic ozonation over Ni-containing layered double hydroxide nanocatalyst, Sep. Purif. Technol., 210 (2019) 764–774.
  14. C.M. Chen, Y. Chen, B.A. Yoza, Y.H. Du, Y.X. Wang, Q.X. Li, L.P. Yi, S.H. Guo, Q.H. Wang, Comparison of efficiencies and mechanisms of catalytic ozonation of recalcitrant petroleum refinery wastewater by Ce, Mg, and Ce–Mg oxides loaded Al2O3, Catalysts, 7 (2017) 72.
  15. B. Wang, H. Zhang, F.F. Wang, X.G.Y. Xiong, K. Tian, Y.B. Sun, T.T. Yu, Application of heterogeneous catalytic ozonation for refractory organics in wastewater, Catalysts, 9 (2019) 241.
  16. Y.D. Wang, W.F. Ma, B.A. Yoza, Y.Y. Xu, Q.X. Li, C.M. Chen, Q.H. Wang, Y. Gao, S.H. Guo, Y.L. Zhan, Investigation of catalytic ozonation of recalcitrant organic chemicals in aqueous solution over various ZSM-5 zeolites, Catalysts, 8 (2018) 128.
  17. D. Shahidi, R. Roy, A. Azzouz, Advances in catalytic oxidation of organic pollutants – prospects for thorough mineralization by natural clay catalysts, Appl. Catal., B, 174 (2015) 277–292.
  18. W.L. Wang, H.Y. Hu, X. Liu, H.X. Shi, T.H. Zhou, C. Wang, Z.Y. Huo, Q.Y. Wu, Combination of catalytic ozonation by regenerated granular activated carbon (rGAC) and biological activated carbon in the advanced treatment of textile wastewater for reclamation, Chemosphere, 231 (2019) 369–377.
  19. Y.G. Sun, X. Zhang, N. Li, X. Xing, H.L. Yang, F.L. Zhang, J. Cheng, Z.S. Zhang, Z.P. Hao, Surface properties enhanced MnxAlO oxide catalysts derived from MnxAl layered double hydroxides for acetone catalytic oxidation at low temperature, Appl. Catal., B, 251 (2019) 295–304.
  20. X.D. Jia, S.J. Gao, T.Y. Liu, D.Q. Li, P.G. Tang, Y.J. Feng, Fabrication and bifunctional electrocatalytic performance of ternary Co/Ni/Mn layered double hydroxides/polypyrrole/ reduced graphene oxide composite for oxygen reduction and evolution reactions, Electrochim. Acta, 245 (2017) 51–60.
  21. N.T.K. Phuong, M.W. Beak, B.T. Huy, Y.I. Lee, Adsorption and photodegradation kinetics of herbicide 2,4,5-trichlorophenoxyacetic acid with MgFeTi layered double hydroxides, Chemosphere,
  22. Z. Xu, M. Xie, Y. Ben, J. Shen, F. Qi, Z. Chen, Efficiency and mechanism of atenolol decomposition in Co–FeOOH catalytic ozonation, J. Hazard. Mater., 365 (2019) 146–154.
  23. K.J. Wei, X.X. Cao, W.C. Gu, P. Liang, X. Huang, X.Y. Zhang, Ni-induced C-Al2O3-framework ((Ni)CAF) supported coremultishell catalysts for efficient catalytic ozonation: a structure-to-performance study, Environ. Sci. Technol., 53 (2019) 6917–6926.
  24. Y.L. Nie, C. Hu, N.N. Li, L. Yang, J.H. Qu, Inhibition of bromate formation by surface reduction in catalytic ozonation of organic pollutants over β-FeOOH/Al2O3, Appl. Catal., B, 147 (2014) 287–292.
  25. O.E. Albertson, Changes in the biochemical oxygen demand procedure in the 21st edition of Standard Methods for the examination of water and wastewater, Water Environ. Res., 79 (2007) 453–455.
  26. A. Alejandre, F. Medina, X. Rodriguez, P. Salagre, Y. Cesteros, J.E. Sueiras, Cu/Ni/Al layered double hydroxides as precursors of catalysts for the wet air oxidation of phenol aqueous solutions, Appl. Catal., B, 30 (2001) 195–207.
  27. R. Danial, S. Sobri, L.C. Abdullah, M.N. Mobarekeh, FTIR, CHNS and XRD analyses define mechanism of glyphosate herbicide removal by electrocoagulation, Chemosphere, 233 (2019) 559–569.
  28. H. Chen, L.F. Hu, M. Chen, Y. Yan, L.M. Wu, Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials, Adv. Funct. Mater., 24 (2014) 934–942.
  29. S. Zhao, H.T. Zhu, Z. Wang, P. Song, M. Ban, X.F. Song, A loose hybrid nanofiltration membrane fabricated via chelatingassisted in-situ growth of Co/Ni LDHs for dye wastewater treatment, Chem. Eng. J., 353 (2018) 460–471.
  30. R. Elmoubarki, F.Z. Mahjoubi, A. Elhalil, H. Tounsadi, M. Abdennouri, M. Sadiq, S. Qourzal, A. Zouhri, N. Barka, Ni/Fe and Mg/Fe layered double hydroxides and their calcined derivatives: preparation, characterization and application on textile dyes removal, J. Mater. Res. Technol., 6 (2017) 271–283.
  31. Q.Z. Dai, J.Y. Wang, J. Yu, J. Chen, J.M. Chen, Catalytic ozonation for the degradation of acetylsalicylic acid in aqueous solution by magnetic CeO2 nanometer catalyst particles, Appl. Catal., B, 144 (2014) 686–693.
  32. D.P. Lapham, J.L. Lapham, BET surface area measurement of commercial magnesium stearate by krypton adsorption in preference to nitrogen adsorption, Int. J. Pharm., 568 (2019) 118522.
  33. B.A. Wan, Y.P. Yan, R.X. Huang, D.B. Abdala, F. Liu, Y.Z. Tang, W.F. Tan, X.H. Feng, Formation of Zn–Al layered double hydroxides (LDH) during the interaction of ZnO nanoparticles (NPs) with γ-Al2O3, Sci. Total Environ., 650 (2019) 1980–1987.
  34. J. Qu, L. Sha, Z.G. Xu, Z.Y. He, M. Wu, C.J. Wu, Q.W. Zhang, Calcium chloride addition to overcome the barriers for synthesizing new Ca–Ti layered double hydroxide by mechanochemistry, Appl. Clay Sci., 173 (2019) 29–34.
  35. L. Wu, X. Ding, Z.C. Zheng, Y.L. Ma, A. Atrens, X.B. Chen, Z.H. Xie, D.E. Sun, F.S. Pan, Fabrication and characterization of an actively protective Mg–Al LDHs/Al2O3 composite coating on magnesium alloy AZ31, Appl. Surf. Sci., 487 (2019) 558–568.
  36. J.P. He, Z.X. Yang, L. Zhang, Y. Li, L.W. Pan, Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming, Int. J. Hydrogen Energy, 42 (2017) 9930–9937.
  37. Y.L. Nie, N.N. Li, C. Hu, Enhanced inhibition of bromate formation in catalytic ozonation of organic pollutants over Fe–Al LDH/Al2O3, Sep. Purif. Technol., 151 (2015) 256–261.
  38. L.Y. Qu, H. Huang, F. Xia, Y.Y. Liu, R.A. Dahlgren, M.H. Zhang, K. Mei, Risk analysis of heavy metal concentration in surface waters across the rural-urban interface of the Wen-Rui Tang River, China, Environ. Pollut., 237 (2018) 639–649.
  39. T. Guan, L. Fang, L.L. Liu, F. Wu, Y. Lu, H.J. Luo, J. Hu, B.S. Hu, M. Zhou, Self-supported ultrathin Ni–Co-LDH nanosheet array/Ag nanowire binder-free composite electrode for high-performance supercapacitor, J. Alloys Compd., 799 (2019) 521–528.
  40. W.J. Lee, Y.P. Bao, X. Hu, T.T. Lim, Hybrid catalytic ozonationmembrane filtration process with CeOx and MnOx impregnated catalytic ceramic membranes for micropollutants degradation, Chem. Eng. J., 378 (2019) 121670.
  41. P. Gao, Y. Song, S.N. Wang, C. Descorme, S.X. Yang, Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst in the catalytic wet air oxidation (CWAO) of cationic red GTL under mild reaction conditions, Front. Environ. Sci. Eng., 12 (2018) 8.
  42. U. von Gunten, Ozonation of drinking water: part I. Oxidation kinetics and product formation, Water Res., 37 (2003) 1443–1467.
  43. Z.L. Song, Y.T. Zhang, C. Liu, B.B. Xu, F. Qi, D.H. Yuan, S.Y. Pu, Insight into •OH and •O2 formation in heterogeneous catalytic ozonation by delocalized electrons and surface oxygencontaining functional groups in layered-structure nanocarbons, Chem. Eng. J., 357 (2019) 655–666. 146 (2016) 51–59.