References

  1. X. Lin, P. Lv, Q. Guan, H. Li, H. Zhai, C. Liu, Bismuth titanate microspheres: directed synthesis and their visible light photocatalytic activity, Appl. Surf. Sci., 258 (2012) 7146–7153.
  2. K.P.O. Mahesh, D.-H. Kuo, B.-R. Huang, Facile synthesis of heterostructured Ag-deposited SiO2@TIO2 composite spheres with enhanced catalytic activity towards the photodegradation of AB1 dye, J. Mol. Catal. A: Chem., 396 (2015) 290–296.
  3. A. Senthilraja, B. Subash, P. Dhatshanamurthi, M. Swaminathan, M. Shanthi, Photocatalytic detoxification of acid red 18 by modified ZnO catalyst under sunlight irradiation, Spectrochim. Acta, Part A, 138 (2015) 31–37.
  4. W. Raza, M.M. Haque, M. Muneer, T. Harada, M. Matsumura, Synthesis, characterization and photocatalytic performance of visible light induced bismuth oxide nanoparticle, J. Alloys Compd., 648 (2015) 641–650.
  5. R. Khan, M.S. Hassan, P. Uthirakumar, J.H. Yun, M.-S. Khil, I.-H. Lee, Facile synthesis of ZnO nanoglobules and its photocatalytic activity in the degradation of methyl orange dye under UV irradiation, Mater. Lett., 152 (2015) 163–165.
  6. G. Poogodi, P. Anandan, R.M. Kumar, R. Jayavel, Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol– gel spin coating method, Spectrochim. Acta, Part A, 148 (2015) 237–243.
  7. S. Raeisivand, M. Sadeghi, S. Hemati, A. Fadaei, M. Sedehi, A. Sadeghi, S.M. Hoseini, Photocatalytic degradation of catechol in aqueous solutions: a comparison between UV/Fe2O3 and Fe2O3/sunlight processes, Desal. Water Treat., 154 (2019) 340–346.
  8. F. Liu, X. Shao, S. Yang, Bi2S3-ZnS/graphene complexes: synthesis, characterization, and photoactivity for the decolorization of dyes under visible light, Mater. Sci. Semicond. Process., 34 (2015) 104–108.
  9. J. Ma, J. Ding, L. Yu, L. Li, Y. Kong, S. Komarneni, Synthesis of Fe2O3-NiO-Cr2O3 composites from NiFe-layered double hydroxide for degrading methylene blue under visible light, Appl. Clay Sci., 107 (2015) 85–89.
  10. Y. Huang, W. Fan, B. Long, H. Li, F. Zhao, Z. Liu, Y. Tong, H. Ji, Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions, Appl. Catal., B, 185 (2016) 68–76.
  11. Q.I. Rahman, M. Ahmad, S.K. Misra, M.B. Lohani, Hexagonal ZnO nanorods assembled flowers for photocatalytic dye degradation: growth, structural and optical properties, Superlattices Microstruct., 64 (2013) 495–506.
  12. P. Bansal, P. Kaur, D. Sud, Heterostructured TiO2/ZnO excellent nanophotocatalysts for degradation of organic contaminants in aqueous solution, Desal. Water Treat., 52 (2014) 7004–7014.
  13. M. Bagheri, M. Heydari, M.R. Vaezi, Influence of reaction conditions on formation of ionic liquid-based nanostructured Bi2O3 as an efficient visible-light-driven photocatalyst, J. Phys. Chem. Solids, 112 (2018) 14–19.
  14. P. Chowdhury, H. Gomaa, A.K. Ray, Sacrifical hydrogen generation from aqueous triethanolamine with eosin Y-sensitized Pt/TiO2 photocatalyst in UV, visible and solar light irradiation, Chemosphere, 121 (2015) 54–61.
  15. J. Yu, W.-F. Lin, L.-H. Leng, S.-K. Bao, J.-P. Zou, X.-B. Luo, D.-Z. Chen, S.-L. Luo, C.-T. Au, Adsorption-degradation synergetic effects on removal of methylene blue over heterostructured TiO2/Co4S4.23Se3.77 composites, J. Mol. Catal. A: Chem., 394 (2014) 121–128.
  16. R. Liu, P. Hu, S. Chen, Photocatalytic activity of Ag3PO4 nanoparticle/TiO2 nanobelt heterostructures, Appl. Surf. Sci., 258 (2012) 9805–9809.
  17. T.N. Soitah, Y. Chunhui, Y. Yong, N. Yinghua, S. Liang, Properties of Bi2O3 thin films prepared via a modified pechini route, Curr. Appl. Phys., 10 (2010) 1372–1377.
  18. Y. Lu, Y. Zhao, J. Zhao, Y. Song, Z. Huang, F. Gao, N. Li, Y. Li, Photoactive β-Bi2O3 architectures prepared by a simple solution crystallization method, Ceram. Int., 40 (2014) 15057–15063.
  19. Z. Wang, S. Bi, Y. Wan, P. Huang, M. Zheng, Optical properties of a new Bi38Mo7O78 semiconductor with fluorite-type δ-Bi2O3 structure, Appl. Surf. Sci., 399 (2017) 506–514.
  20. A. Charanpahari, S.S. Umare, R. Sasikala, Enhanced photodegradation of dyes on Bi2O3 microflakes: effect of GeO2 addition on photocatalytic activity, Sep. Purif. Technol., 133 (2014) 438–442.
  21. L. Zhang, P. Ghimire, J. Phuriragpitikhon, B. Jiang, A.A.S. Goncalves, M. Jaroniec, Facile formation of metallic bismuth/ bismuth oxide heterojunction on porous carbon with enhanced photocatalytic activity, J. Colloid Interface Sci., 513 (2018) 82–91.
  22. Q. Wang, J. Hui, L. Yang, H. Huang, Y. Cai, S. Yin, Y. Ding, Enhanced photocatalytic performance of Bi2O3/H-ZSM-5 composite for rhodamine B degradation under UV light irradiation, Appl. Surf. Sci., 289 (2014) 224–229.
  23. S. Xue, H. He, Q. Fan, C. Yu, K. Yang, W. Huang, Y. Zhou, Y. Xie, La/Ce-codoped Bi2O3 composite photocatalysts with high photocatalytic performance in removal of high concentration dye, J. Environ. Sci., 60 (2017) 70–77.
  24. M. Ratavo, G.T. West, P.J. Kelly, X. Xia, Y. Gao, Synergistic effect of doping with nitrogen and molybdenum on the photocatalytic properties of thin titania films, Vaccum, 114 (2015) 205–212.
  25. P. Malathy, K. Vignesh, M. Rajarajan, A. Suganthi, Enhanced photocatalytic performance of transition metal doped Bi2O3 nanoparticle under visible light irradiation, Ceram. Int., 40 (2014) 101–107.
  26. S. Han, J. Li, K. Yang, J. Lin, Fabrication of a β-Bi2O3/BiOI heterojunction and its efficient photocatalysis for organic dye removal, Chin. J. Catal., 36 (2015) 2119–2126.
  27. X. Liu, H. Deng, W. Yao, Q. Jiang, J. Shen, Preparation and photocatalytic activity of Y-doped Bi2O3, J. Alloys Compd., 651 (2015) 135–142.
  28. V.L. Chandraboss, L. Natanapatham, B. Karthikeyan, J. Kamalakkannan, S. Prabha, S. Senthivelan, Effect of bismuth doping on the ZnO nanocomposite material and study of its photocatalytic activity under UV-light, Mater. Res. Bull., 48 (2013) 3707–3712.
  29. C.-Y. Chen, J.-C. Weng, J.-H. Chen, S.-H. Ma, K.-H. Chen, T.-L. Horng, C.-Y. Tsay, C.-J. Chang, C.-K. Lin, J.-J. Wu, Photocatalyst ZnO-doped Bi2O3 powder prepared by spray pyrolysis, Powder Technol., 272 (2015) 316–321.
  30. L.-R. Hou, C.-Z. Yuan, Y. Peng, Preparation and photocatalytic property of sunlight-driven photocatalyst Bi38ZnO58, J. Mol. Catal. A: Chem., 252 (2006) 132–135.
  31. S. Ghattavi, A. Nezamzadeh-Ejhieh, A brief study on the boosted photocatalytic activity of AgI/WO3/ZnO in the degradation of methylene blue under visible light irradiation, Desal. Water Treat., 166 (2019) 92–104.
  32. X. Zhao, S. Qu, J. Han, Photocatalytic degradation of tetracycline on g-C3N4@Fe3O4 magnetic photocatalyst, Desal. Water Treat., 150 (2019) 213–219.
  33. H. Yu, P. Xiao, J. Tian, F. Wang, J. Yu, Phenylamine-functionalized rGO/TiO2 photocatalysts: spatially separated adsorption sites and tunable photocatalytic selectivity, ACS Appl. Mater. Interfaces, 8 (2016) 29470–29477.
  34. D. Li, H. Wang, H. Tang, X. Yang, Q. Liu, Remarkable enhancement in solar oxygen evolution from MoSe2/Ag3PO4 heterojunction photocatalyst via in situ constructing interfacial contact, ACS Sustainable Chem. Eng., 7 (2019) 8466–8474.
  35. Y. Guo, Y. Ao, P. Wang, C. Wang, Mediator-free direct dual-Z-scheme Bi2S3/BiVO4/MgInS4 composite photocatalysts with enhanced visible-light-driven performance towards carbamazepine degradation, Appl. Catal., B, 254 (2019) 479–490.
  36. M. Ren, Y. Ao, P. Wang, C. Wang, Construction of silver/graphitic-C3N4/bismuth tantalite Z-scheme photocatalyst with enhanced visible-light-driven performance for sulfamethoxazole degradation, Chem. Eng. J., 378 (2019) 122122–122131.
  37. Y. Fu, Z. Li, Q. Liu, X. Yang, H. Tang, Construction of carbon nitride and MoS2 quantum dot 2D/0D hybrid photocatalyst: direct Z-scheme mechanism for improved photocatalytic activity, Chin. J. Catal., 38 (2017) 2160–2170.
  38. W. Liu, J. Shen, X. Yang, Q. Liu, H. Tang, Dual Z-scheme g-C3N4/Ag3PO4/Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting, Appl. Surf. Sci., 456 (2018) 369–378.
  39. S.A. Khayyat, M.S. Akhtar, A. Umar, ZnO nanocapsules for photocatalytic degradation of thionine, Mater. Lett., 81 (2012) 239–241.
  40. R. Kumar, G. Kumar, M.S. Akhtar, A. Umar, Sonophotocatalytic degradation of methyl orange using ZnO nano-aggregates, J. Alloys Compd., 629 (2015) 167–172.
  41. T.K. Ghorai, N. Biswas, Photodegradation of rhodamine 6G in aqueous solution via SrCrO4 and TiO2 nano-sphere mixed oxides, J. Mater. Res. Technol., 2 (2013) 10–17.
  42. D. Sanchez-Martinez, I. Juarez-Ramirez, L.M. Torres-Martinez, I.D. Leon-Abarte, Photocatalytic properties of Bi2O3 powders obtained by an ultrasound-assisted precipitation method, Ceram. Int., 42 (2016) 2013–2020.
  43. W. Shan, Y. Hu, Z. Bai, M. Zheng, C. Wei, In situ preparation of C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity, Appl. Catal., B, 188 (2016) 1–12.
  44. J. Lv, T. Sheng, L. Su, G. Xu, D. Wang, Z. Zheng, Y. Wu, N,S co-doped-TiO2/fly ash beads composite material and visible light photocatalytic activity, Appl. Surf. Sci., 284 (2013) 229–234.
  45. N. Kannan, G.G. Nagnathan, Photocatalytic degradation of safranine dye on semiconductor by UV radiation, Int. J. Environ. Prot., 27 (2007) 1103–1108.
  46. S.K. Kansal, R. Lamba, S.K. Mehta, A. Umar, Photocatalytic degradation of alizarin red s using simply synthesized ZnO nanoparticles, Mater. Lett., 106 (2013) 385–389.
  47. A. Amalraj, A. Pius, Photocatalytic degradation of alizarin red S and bismarck brown R using TiO2 photocatalyst, J. Chem. Appl. Biochem., 1 (2014) 1–7.
  48. P. Parra, V. Sarria, S. Maloto, P. Periner, C. Pulgarin, Photocatalytic degradation of attrzine using suspended and supported TiO2, J. Appl. Catal., B, 51 (2004) 107–116.
  49. M.L.D. Souza, P. Corio, Effect of silver nanoparticles on TiO2-mediated photodegradation of alizarin red S, Appl. Catal., A, 136–137 (2013) 325–333.
  50. N.N. Rao, S. Dube, TiO2-catalysed photodegradation of reactive orange 84 and alizarin red S biological stain, Indian J. Chem. Technol., 4 (1997) 1–6.
  51. J. Hou, C. Yang, Z. Wang, S. Jiao, H. Zhu, Bi2O3 quantum dots decorated anatase TiO2 nanocrystals with exposed {0 0 1} facets on graphene sheets for enhanced visible-light photocatalytic performance, Appl. Catal., B, 129 (2013) 333–341.
  52. N. Wetchakun, S. Chainet, S. Panichphant, K. Wetchakun, Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites, Ceram. Int., 41 (2015) 5999–6004.
  53. Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals, Am. Mineral., 85 (2000) 543–556.
  54. L. Saikia, D. Bhuyan, M. Saikia, B. Malakar, D.K. Dutta, P. Sengupta, Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light, Appl. Catal., A, 490 (2015) 42–49.
  55. K. Yang, X. Li, C. Yu, D. Zeng, F. Chen, K. Zhang, W. Huang, H. Ji, Review on heterophase/homophase junctions for efficient photocatalysis: the case of phase transition construction, Chin. J. Catal., 40 (2019) 796–818.