References

  1. F.P.V.D. Zee, S. Villaverde, Combined anaerobic-aerobic treatment of azo dyes: a short review of bioreactor studies, Water Res., 39 (2005) 1425–1440.
  2. R.A. Pereira, M.F.R. Pereira, M.M. Alves, L. Pereira, Carbon based materials as novel redox mediators for dye wastewater biodegradation, Appl. Catal. B, Environ., 144 (2014) 713–720.
  3. W. Liu, L. Liu, C. Liu, Y. Hao, H. Yang, B. Yuan, J. Jiang, Methylene blue enhances the anaerobic decolorization and detoxication of aze dye by Shewanella onediensis MR-1, Biochem. Eng. J., 110 (2016) 115–124.
  4. F.P.V.D. Zee, R.H.M. Bouwman, D.P.B.T.B. Strik, G. Lettinga, J.A. Field, Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors, Biotechnol. Bioeng., 75 (2001) 691–701.
  5. F.J. Cervantes, G.E. Jorge, M. Arturo, L.H. Alvarez, A. Sonia, Immobilized humic substances on an anion exchange resin and their role on the redox biotransformation of contaminants, Bioresour. Technol., 102 (2011) 97–100.
  6. J. Chen, W. Hong, T. Huang, L. Zhang, W. Li, Y. Wang, Activated carbon fiber for heterogeneous activation of persulfate: implication for the decolorization of azo dye, Environ. Sci. Pollut. Res. Int., 23 (2016) 18564–18574.
  7. J. Chen, L. Zhang, T. Huang, W. Li, Y. Wang, Z. Wang, Decolorization of azo dye by peroxymonosulfate activated by carbon nanotube: radical versus non-radical mechanism, J. Hazard. Mater., 320 (2016) 571–580.
  8. J. Chen, Y. Wang, C. Fang, T. Huang, C.Y. Wei, Synergistic effect of activated carbon and ultrasonic irradiation on persulfate activation, Desal. Water Treat., 71 (2017) 159–167.
  9. T. Huang, J. Chen, Z. Wang, X. Guo, J.C. Crittenden, Excellent performance of cobalt-impregnated activated carbon in peroxymonosulfate activation for acid orange 7 oxidation, Environ. Sci. Pollut. Res. Int., 24 (2017) 9651–9661.
  10. L.R. Pereira, R. Pereira, M.F. Pereira, M.S. Alves, Carbon Nanotubes as Novel Redox Mediators for Dyed Wastewaters Biodegradation, In: World Congress on Anaerobic Digestion, Santiago De Compostela, 2013, pp. 1–4.
  11. R.A. Pereira, A.F. Salvador, P. Dias, M.F. Pereira, M.M. Alves, L. Pereira, Perspectives on carbon materials as powerful catalysts in continuous anaerobic bioreactors, Water. Res., 101 (2016) 441–447.
  12. R.D. Toro, L.B. Celis, F.J. Cervantes, J.R. Rangel-Mendez, Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator, J. Hazard. Mater., 260 (2013) 967–974.
  13. M.L. Inyang, B. Gao, Y. Yao, Y. Xue, A. Zimmerman, A. Mosa, P. Pullammanppallil, Y.S. Ok, X. Cao, A review of biochar as a low-cost adsorbent for aqueous heavy metal removal, Crit. Rev. Environ. Sci. Technol., 46 (2016) 406–433.
  14. L.M. Sun, W.Q. Xia, X.F. Zhu, Preparation of activated carbon from modified rice straw and its adsorption of SO2, Chin. J. Environ. Eng., 11 (2017) 5109–5113 (in Chinese).
  15. B. Xiao, X.F. Sun, R.C. Sun, Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw, Polym. Degrad. Stab., 74 (2001) 307–319.
  16. S.E. Hale, K. Hanley, J. Lehmann, A. Zimmerman, G. Cornelissen, Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar, Environ. Sci. Technol., 45 (2011) 10445–10453.
  17. C.G. Rocha, D.A. Zaia, R.V. Alfaya, A.A. Alfaya, Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents, J. Hazard. Mater., 166 (2009) 383–388.
  18. A.A. Daifullah, S.M. Yakout, S.A. Elreefy, Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw, J. Hazard. Mater., 147 (2007) 633–643.
  19. C.L. Mantell, Carbon and Graphite Handbook, Wiley, New York, NY, 1968.
  20. S.L. Wang, Y.M. Tzou, Y.H. Lu, G. Sheng, Removal of 3-chlorophenol from water using rice-straw-based carbon, J. Hazard. Mater., 147 (2007) 313–318.
  21. S.Y. Oh, Y.D. Seo, Polymer/biomass-derived biochar for use as a sorbent and electron transfer mediator in environmental applications, Bioresour. Technol., 218 (2016) 77–83.
  22. L. Yu, Y. Yuan, J. Tang, Y. Wang, S. Zhou, Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens, Sci. Rep., 5 (2015) 16221.
  23. H. Benaddi, T.J. Bandosz, J. Jagiello, Surface functionality of activated carbons obtained from chemical activation of wood, Carbon, 38 (2000) 669–674.
  24. R. Demircakan, N. Baccile, M. Antonietti, M.M. Titirici, Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid, Chem. Mater., 21 (2009) 484–490.
  25. X.H. Guan, G.H. Chen, C. Shang, ATR-FTIR and XPS study on the structure of complexes formed upon the adsorption of simple organic acids on aluminum hydroxide, J. Environ. Sci., 19 (2007) 438–443.
  26. D. Kowalczyk, S. Brzeziński, T. Makowski, W. Fortuniak, Conductive hydrophobic hybrid textiles modified with carbon nanotubes, Appl. Surf. Sci., 357 (2015) 1007–1014.
  27. V. Fierro, V. Tornéfernández, A. Celzard, D. Montané, Influence of the demineralisation on the chemical activation of Kraft lignin with orthophosphoric acid, J. Hazard. Mater., 149 (2007) 126–133.
  28. G.M. Neelgund, A. Oki, Photocatalytic activity of CdS and Ag2S quantum dots deposited on poly (amidoamine) functionalized carbon nanotubes, Appl. Catal. B, Environ., 10 (2011) 99–107.
  29. L. Pereira, R. Pereira, M.F.R Pereira, Thermal modification of activated carbon surface chemistry improves its capacity as redox mediator for azo dye reduction, J. Hazard. Mater., 183 (2010) 931–939.
  30. H.J. Amezquita-Garcia, E. Razo-Flores, F.J. Cervantes, J.R. Rangel-Mandez, Anchorage of anthraquinone molecules onto activated carbon fibers to enhance the reduction of 4-nitrophenol, J. Chem. Technol. Biotechnol., 90 (2015) 1685–1691.
  31. K. Chizari, A. Deneuve, O. Ersen, F. Ileana, Y. Liu, D. Edouard, I. Janowska, D. Bégin, C. Pham-Huu, Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for selective oxidation, ChemSusChem, 5 (2012) 102–108.
  32. L. Feng, Y. Yan, Y. Chen, Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells, Energy Environ. Sci., 4 (2011) 1892–1899.
  33. H. Fu, D. Zhu, Graphene oxide-facilitated reduction of nitrobenzene in sulfide-containing aqueous solutions, Environ. Sci. Technol., 47 (2013) 4204–4210.
  34. T. Heitmann, C. Blodau, Oxidation and incorporation of hydrogen sulfide by dissolved organic matter, Chem. Geol., 235 (2006) 12–20.
  35. H. Tobias, G. Tobias, B. Julia, B. Christian, Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern Bog, Global Change Biol., 13 (2007) 1771–1785.
  36. J.J. Orfão, A.I, Silva, J.C. Pereira, S.A. Barata, I.M. Fonseca, P.C. Faria, Adsorption of a reative dye on chemically modified activated carbons--influence of pH, J. Colloid. Interface Sci., 296 (2006) 480–489.
  37. P.C.C. Faria, J.J.M. Órfão, J.L. Figueiredo, M.F.R. Pereira, Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon, Appl. Surf. Sci., 254 (2008) 3497–3503.
  38. A.B. Dos, F.J. Cervantes, J.B. Van, Azo dye reduction by thermophilic anaerobic granular sludge, and the impact of the redox mediator anthraquinone-2,6-disulfonate (AQDS) on the reductive biochemical transformation, Appl. Microbiol. Biotechnol., 64 (2004) 62–69.
  39. S.Y. Kim, J.Y. An, B.W. Kim, The effects of reductant and carbon source on the microbial decolorization of azo dyes in an anaerobic sludge process, Dyes Pigm., 76 (2008) 256–263.
  40. A. El-Ghenymy, F. Centellas, J.A. Garrido, R.M. Rodríguez, I. Sirés, P.L. Cabot, Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a borondoped diamond anode in divided and undivided tank reactors, Electrochimica. Acta, 130 (2014) 568–576.
  41. B. Bhushan, A. Halasz, J. Hawari, Effect of iron(III), humic acids and anthraquinone-2,6-disulfonate on biodegradation of cyclic nitramines by Clostridium sp. EDB2, J. Appl. Microbiol., 100 (2006) 555–563.
  42. F.P.V.D. Zee, I.A.E. Bisschops, G. Lettinga, Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes, Environ. Sci. Technol., 37 (2003) 402–408.
  43. A. Pandey, P. Singh, L. Iyengar, Bacterial decolorization and degradation of azo dyes, Int. Biodeterior. Biodegrad., 59 (2007) 73–84.