References

  1. A. Asghar, A.A. Abdul Raman, W.M.A. Wan Daud, Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review, J. Cleaner Prod., 87 (2015) 826–838.
  2. E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique, J. Hazard. Mater., 98 (2003) 33–50.
  3. Y. Gao, Y. Wang, H. Zhang, Removal of Rhodamine B with Fe-supported bentonite as heterogeneous photo-Fenton catalyst under visible irradiation, Appl. Catal., B, 178 (2015) 29–36.
  4. F. Gosselin, L.M. Madeira, T. Juhna, J.C. Block, Drinking water and biofilm disinfection by Fenton-like reaction, Water Res., 47 (2013) 5631–5638.
  5. Q. Guo, W. Zi, F. Fei, F. Yue, L. Hai, X. Hui, Fenton-like degradation of Methylene blue using paper mill sludgederived magnetically separable heterogeneous catalyst: characterization and mechanism, J. Environ. Sci., 35 (2015) 20–26.
  6. A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Comparison of photocatalytic efficiency of supported CuO onto micro and nano particles of zeolite X in photodecolorization of Methylene blue and Methyl orange aqueous mixture, Appl. Catal., A, 477 (2014) 83–92.
  7. X. Liu, S. Chao, L. Chen, Y. Hua, M. Zhu, Y. Bai, S. Feng, S.T. Yang, Decoloration of methylene blue by heterogeneous Fenton-like oxidation on Fe3O4/SiO2/C nanospheres in neutral environment, Mater. Chem. Phys., 213 (2018) 231–238.
  8. F. Sun, H. Liu, H. Wang, D. Shu, T. Chen, X. Zou, F. Huang, D. Chen, A novel discovery of a heterogeneous Fenton-like system based on natural siderite: a wide range of pH values from 3 to 9, Sci. Total Environ., 698 (2020) 134293.
  9. N.N. Tusar, D. Maucec, M. Rangus, I. Arcon, M. Mazaj, M. Cotman, A. Pintar, V. Kaucic, Manganese functionalized silicate nanoparticles as a Fenton-type catalyst for water purification by advanced oxidation processes (AOP), Adv. Funct. Mater., 22 (2012) 820–826.
  10. D.H. Bremner, A.E. Burgess, D. Houllemare, K.C. Namkung, Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide, Appl. Catal., B, 63 (2006) 15–19.
  11. M. Chang, H. Shu, H. Yu, An integrated technique using zerovalent iron and UV/H2O2 sequential process for complete decolorization and mineralization of C.I. Acid Black 24 wastewater, J. Hazard. Mater., 138 (2006) 574–581.
  12. N. Ertugay, F.N. Acar, Sonocatalytic degradation of Direct Blue 71 azo dye at the presence zero-valent iron (ZVI), Desal. Water Treat., 51 (2013) 7570–7576.
  13. X. Xue, K. Hanna, M. Abdelmoula, N. Deng, Adsorption and oxidation of PCP on the surface of magnetite: kinetic experiments and spectroscopic investigations, Appl. Catal., B, 89 (2009) 432–440.
  14. K. Zhao, H. Guo, X. Zhou, Adsorption and heterogeneous oxidation of arsenite on modified granular natural siderite: characterization and behaviors, Appl. Geochem., 48 (2014) 184–192.
  15. Z. Lin, X. Ma, L. Zhao, Y. Dong, Kinetics and products of PCB28 degradation through a goethite-catalyzed Fenton-like reaction, Chemosphere, 101 (2014) 15–20.
  16. L. Zhou, T.L. Thanh, J. Gong, J.H. Kim, E.J. Kim, Y. Chang, Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron, Chemosphere, 104 (2014) 155–161.
  17. H.I. Gomes, C. Dias-Ferreira, L.M. Ottosen, A.B. Ribeiro, Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants, J. Colloid Interface Sci., 433 (2014) 189–195.
  18. G. Xu, J. Wang, M. Lu, Complete debromination of decabromodiphenyl ether using the integration of Dehalococcoides sp. strain CBDB1 and zero-valent iron, Chemosphere, 117 (2014) 455–461.
  19. H. Ma, Y. Huang, M. Shen, D. Hu, H. Yang, M. Zhu, S. Yang, X. Shi, Enhanced decoloration efficacy of electrospun polymer nanofibers immobilized with Fe/Ni bimetallic nanoparticles, RSC Adv., 3 (2013) 6455–6465.
  20. X. Qiu, Z. Fang, X. Yan, W. Cheng, K. Lin, Chemical stability and toxicity of nanoscale zero-valent iron in the remediation of chromium-contaminated watershed, Chem. Eng. J., 220 (2013) 61–66.
  21. F. Fu, D.D. Dionysiou, H. Liu, The use of zero-valent iron for groundwater remediation and wastewater treatment: a review, J. Hazard. Mater., 267 (2014) 194–205.
  22. J.A. Donadelli, L. Carlos, A. Arques, F.S.G. Einschlag, Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways, Appl. Catal., B, 231 (2018) 51–61.
  23. V. Bokare, K. Murugesan, Y.M. Kim, J.R. Jeon, E.J. Kim, Y. Chang, Degradation of triclosan by an integrated nano-bio redox process, Bioresour. Technol., 101 (2010) 6354–6360.
  24. M. Bystrzejewski, Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles, J. Solid State Chem., 184 (2011) 1492–1498.
  25. R. Cheng, C. Cheng, G. Liu, X. Zheng, G. Li, J. Li, Removing pentachlorophenol from water using a nanoscale zero-valent iron/H2O2 system, Chemosphere, 141 (2015) 138–143.
  26. H. Wang, T. Chen, D. Chen, X. Zou, M. Li, F. Huang, F. Sun, C. Wang, Sulfurized oolitic hematite as a heterogeneous Fenton-like catalyst for tetracycline antibiotic degradation, Appl. Catal., B, 260 (2020) 118203.
  27. J. Zhang, L. Hu, Y. Liang, H. Yang, D. Sun, The research on refractory oolitic hematite and expectation, China Mining Ind., 16 (2007) 74–76.
  28. H. Guo, D. Stüben, Z. Berner, Removal of arsenic from aqueous solution by natural siderite and hematite, Appl. Geochem., 22 (2007) 1039–1051.
  29. H. Guo, D. Stuben, Z. Berner, U. Kramar, Adsorption of arsenic species from water using activated siderite-hematite column filters, J. Hazard. Mater., 151 (2008) 628–635.
  30. Y. Zhang, H. Liu, D. Chen, T. Chen, The application of modified hematite for removal of carmine red dye: performance and mechanism, Desal. Water Treat., 153 (2019) 300–311.
  31. Y. Zhao, R. Zhang, H. Liu, M. Li, T. Chen, D. Chen, X. Zou, R.L. Frost, Green preparation of magnetic biochar for the effective accumulation of Pb(II): performance and mechanism, Chem. Eng. J., 375 (2019) 122011.
  32. H. Wang, T. Chen, H. Liu, W. Li, X. Zou, C. Wang, M. Li, Comprehensive application of oolitic hematite for H2S removal at high temperature: performance and mechanism, Energy Fuels, 33 (2019) 2037–2044.
  33. Y. Xi, Z. Sun, T. Hreid, G.A. Ayoko, R.L. Frost, Bisphenol A degradation enhanced by air bubbles via advanced oxidation using in situ generated ferrous ions from nano zero-valent iron/ palygorskite composite materials, Chem. Eng. J., 247 (2014) 66–74.
  34. S. Hu, H. Yao, K. Wang, C. Lu, Y. Wu, Intensify removal of nitrobenzene from aqueous solution using nano-zero valent iron/granular activated carbon composite as Fenton-like catalyst, Water Air Soil Pollut., 226 (2015) 155–167.
  35. S. Zha, Y. Cheng, Y. Gao, Z. Chen, M. Megharaj, R. Naidu, Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin, Chem. Eng. J., 255 (2014) 141–148.
  36. S. Rahim Pouran, A.A. Abdul Raman, W.M.A. Wan Daud, Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions, J. Cleaner Prod., 64 (2014) 24–35.
  37. Y. Wu, L.F, S. Hu, S. Wang, H. Yao, K. Wang, Role of dissolved iron ions in nanoparticulate zero-valent iron/H2O2 Fenton-like system, Int. J. Environ. Sci. Technol., 16 (2019) 4551–4562.
  38. R. Idel-aouad, M. Valiente, A. Yaacoubi, B. Tanouti, M. Lopez- Mesas, Rapid decolourization and mineralization of the azo dye C.I. Acid Red 14 by heterogeneous Fenton reaction, J. Hazard. Mater., 186 (2011) 745–750.
  39. A.E.H. Machado, J.A.D. Miranda, R.F.D. Freitas, E.T.F.M. Duarte, L.F. Ferreira, Y.D.T. Albuquerque, R. Ruggiero, C. Sattler, L.D. Oliveira, Destruction of the organic matter present in effluent from a cellulose and paper industry using photocatalysis, J. Photochem. Photobiol., A, 155 (2003) 231–241.
  40. J. Kochany, A. Lugowski, Application of Fenton’s reagent and activated carbon for removal of nitrification inhibitors, Environ. Technol., 19 (2010) 425–429.
  41. M. Pera-Titus, V. Garcı́a-Molina, M.A. Baños, J. Giménez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal., B, 47 (2004) 219–256.
  42. Y. Wang, Y. Gao, L. Chen, H. Zhang, Goethite as an efficient heterogeneous Fenton catalyst for the degradation of methyl orange, Catal. Today, 252 (2015) 107–112.
  43. S. Zhang, D. Wang, L. Zhou, X. Zhang, P. Fan, X. Quan, Intensified internal electrolysis for degradation of methylene blue as model compound induced by a novel hybrid material: multi-walled carbon nanotubes immobilized on zero-valent iron plates (Fe0-CNTs), Chem. Eng. J., 217 (2013) 99–107.
  44. J. Feng, X. Hu, P. Yue, Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst, Water Res., 40 (2006) 641–646.
  45. Y. Kang, K.Y. Hwang, Effects of reaction conditions on the oxidation efficiency in the Fenton process, Water Res., 34 (2000) 2786–2790.
  46. Y. Zhang, T. Chen, Y. Zhao, D. Chen, Y. Zhou, H. Liu, Catalytic effect of siderite on H2O2 oxidation of carmine dye: performance, mechanism and kinetics, Appl. Geochem., 106 (2019) 26–33.
  47. H. Gallard, J. De Laat, B. Legube, Spectrophotometric study of the formation of iron(III)-hydroperoxy complexes in homogeneous aqueous solutions, Water Res., 33 (1999) 2929–2936.
  48. Y. Liu, A. Zhou, Y. Gan, X. Li, Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene, J. Hazard. Mater., 308 (2016) 187–191.
  49. W. Luo, L. Zhu, N. Wang, H. Tang, M. Cao, Y. She, Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst, Environ. Sci. Technol., 44 (2010) 1786–1791.
  50. X. Meng, S. Yan, W. Wu, G. Zheng, L. Zhou, Heterogeneous Fenton-like degradation of phenanthrene catalyzed by schwertmannite biosynthesized using Acidithiobacillus ferrooxidans, RSC Adv., 7 (2017) 21638–21648.
  51. J.J. López Peñalver, C.V. Gómez Pacheco, M. Sánchez Polo, J. Rivera Utrilla, Degradation of tetracyclines in different water matrices by advanced oxidation/reduction processes based on gamma radiation, J. Chem. Technol. Biotechnol., 88 (2013) 1096–1108.
  52. J. Wang, R. Zhuan, L. Chu, The occurrence, distribution and degradation of antibiotics by ionizing radiation: an overview, Sci. Total Environ., 646 (2019) 1385–1397.
  53. W. Wang, J. Song, X. Han, Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2, J. Hazard. Mater., 262 (2013) 412–419.
  54. M.A. Behnajady, N. Modirshahla, F. Ghanbary, A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process, J. Hazard. Mater., 148 (2007) 98–102.
  55. H. Xu, T. Shi, L. Wu, S. Qi, Discoloration of Methyl Orange in the presence of schorl and H2O2: kinetics and mechanism, Water Air Soil Pollut., 224 (2013) 1740–1750.
  56. B. Sun, H. Li, X. Li, X. Liu, C. Zhang, H. Xu, X. Zhao, Degradation of organic dyes over Fenton-like Cu2O–Cu/C catalysts, Ind. Eng. Chem. Res., 57 (2018) 14011–14021.
  57. F. Huang, L. Chen, H. Wang, Z. Yan, Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma, Chem. Eng. J., 162 (2010) 250–256.
  58. M.A. Rauf, M.A. Meetani, A. Khaleel, A. Ahmed, Photocatalytic degradation of Methylene blue using a mixed catalyst and product analysis by LC/MS, Chem. Eng. J., 157 (2010) 373–378.
  59. L. Chen, J. Ma, X. Li, J. Zhang, J. Fang, Y. Guan, P. Xie, Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles, Environ. Sci. Technol., 45 (2011) 3925–3930.
  60. Y. Lin, D. Li, J. Hu, G. Xiao, J. Wang, W. Li, X. Fu, Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite, J. Phys. Chem. C, 116 (2012) 5764–5772.