References

  1. E.S. Yoo, J. Lıbra, U. Wıesman, Reduction of azo dyes by Desulfovibrio desulfiricans, Water Sci. Technol., 14 (2000) 15–22.
  2. P.C. Vandevivere, R. Bianchi, W. Vestreate, Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies, J. Chem. Technol. Biotechnol., 72 (1998) 289–302.
  3. E. Alver, M. Bulut, A.Ü. Metin, H. Çiftçi, One step effective removal of congo red in chitosan nanoparticles by encapsulation, Spectrochim. Acta, Part A, 5 (2017) 132–138.
  4. C. Srilakshmi, R. Saraf, Ag-doped hydroxyapatite as efficient adsorbent for removal of congo red dye from aqueous solution: synthesis, kinetic and equilibrium adsorption isotherm analysis, Microporous Mesoporous Mater., 219 (2016) 134–144.
  5. V.K. Gupta, Suhas, Application of low-cost adsorbents for dye removal–a review, J. Environ. Manage., 90 (2009) 2313–234.
  6. F. Deniz, S. Karaman, Removal of basic red 46 dye from aqueous solution by pine tree leaves, Chem. Eng. J., 170 (2011) 67–74.
  7. L. Yu, Y.-M. Luo, The adsorption mechanism of anionic and cationic dyes by Jerusalem artichoke stalk-based mesoporous activated carbon, J. Environ. Chem. Eng., 2 (2014) 220–229.
  8. A.M. Aljeboree, A.N. Alshirifi, A.F. Alkaim, Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon, Arabian J. Chem., 10 (2017) S3381–S3393.
  9. N.M. Mahmoodi, M. Arami, H. Bahrami, S. Khorramfar, Novel biosorbent (Canola hull): surface characterization and dye removal ability at different cationic dye concentrations, Desalination, 264 (2010) 134–142.
  10. A. Fujishima, T.N. Rao, D.A. Tryk, TiO2 photocatalysts and diamond electrodes, Electrochim. Acta, 45 (2000) 4683–4690.
  11. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 1 (1995) 69–96.
  12. R. Saravanan, G. Francisco, A. Stephen, Basic Principles, Mechanism, and Challenges of Photocatalysis, Springer Series on Polymer and Composite Materials, Springer, Cham, 2017, pp. 19–40.
  13. S.N. Basahel, T.T. Ali, M. Mokhtar, K. Narasimharao, Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange, Nanoscale Res. Lett., 18 (2015) 10–73.
  14. M.V. Carević, N.D. Abazović, M.N. Mitrić, G. Ćirić-Marjanović, M.D. Mojović, S.P. Ahrenkiel, M.I. Čomor, Properties of zirconia/polyaniline hybrid nanocomposites and their application as photocatalysts for degradation of model pollutants, Mater. Chem. Phys., 205 (2018) 130–137.
  15. N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters, J. Photochem. Photobiol., A, 157 (2003) 111–116.
  16. E. Evgenidou, K. Fytianos, I. Poulios, Photocatalytic oxidation of dimethoate in aqueous solutions, J. Photochem. Photobiol., A, 175 (2005) 29–38.
  17. C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, J.M. Herrmann, Influence of chemical structure of dyes of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2, J. Photochem. Photobiol., A, 158 (2003) 27–36.
  18. B. Ozbay, N. Genc, İ. Ozbay, B. Baghaki, S. Zor, Photocatalytic activities of polyaniline-modified TiO2 and ZnO under visible light: an experimental and modeling study, Clean Technol. Environ. Policy, 18 (2016) 2591–2601.
  19. S. Polisetti, A.D. Parag, G. Madras, Photocatalytic activity of combustion synthesized ZrO2 and ZrO2–TiO2 mixed oxides, Ind. Eng. Chem. Res., 50 (2011) 12915–12924.
  20. S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, J. Hazard. Mater., 141(2007) 581–590.
  21. R. Abe, T. Takata, H. Sugihara, K. Domen Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3/I shuttle redox mediator, Chem. Commun., 30 (2005) 3829–3831.
  22. J. Kim, C.W. Lee, W. Choi, Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light, Environ. Sci. Technol., 17 (2010) 6849–6854.
  23. X. Wang, J.C. Yu, Y. Chen, L. Wu, X. Fu, ZrO2-modified mesoporous nanocrystalline TiO2–xNx as efficient visible light photocatalysts, Environ. Sci. Technol., 7 (2006) 2369–2374.
  24. R. Thiruvenkatachari, S. Vigneswaran, I.S. Moon, A review on UV/TiO2 photocatalytic oxidation process, Korean J. Chem. Eng., 1 (2008) 64–72.
  25. F. Falbe, M. Regnitz, Chemilexikon, 9.Auflage, George Thieme Verlag, Stutgart, 1992.
  26. S.A. Nabi, M. Shahadat, R. Bushra, M. Oves, F. Ahmed, Synthesis and characterization of polyaniline Zr(IV) sulphosalicylate composite and its applications (1) electrical conductivity, and (2) antimicrobial activity studies, Chem. Eng. J., 173 (2011) 706–714.
  27. I. Azocar, E. Vargas, N. Duran, A. Arrieta, E. Gonzalez, J. Pavez, M.J. Kogan, J.H. Zagal, M.A. Paez, Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles, Mater. Chem. Phys., 137 (2012) 396–403.
  28. H. Zhu, S. Peng, W. Jiang, Electrochemical properties of PANI as single electrode of electrochemical capacitors in acid electrolytes, Sci. World J., 2013 (2013) 1–8.
  29. A. Tiselius, S. Hjerten, O. Levin, Protein chromatography on calcium phosphate columns, Arch. Biochem. Biophys., 65 (1956) 132–55.
  30. K. Zare, H. Sadegh, R. Shahryari-ghoshekandi, B. Maazinejad, V. Ali, S. Agarwal, V.K. Gupta, Enhanced removal of toxic congo red dye using multi walled carbon nanotubes: kinetic, equilibrium studies and its comparison with other adsorbents, J. Mol. Liq., 212 (2015) 266–271.
  31. A. Riede, M. Helmstedt, V. Riede, J. Stejskal, In situ polymerized polyaniline films. 2. Dispersion polymerization of aniline in the presence of colloidal silica, J. Am. Chem. Soc., 15 (2002) 6240–6244.
  32. Q.X. Zhang, Z.Z. Yu, X.L. Xie, Y.W. Mai, Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier, Polymer, 17 (2004) 5985–5994.
  33. D.F. Skoog, T. Nieman, E. Kılıç, F. Köseoğlu, H. Yılmaz, Eds., Enstrümantal Analiz Kitabı (Instrumental Analysis Book), 5th ed, Ankara, Bilim Yayıncılık, 1992.
  34. W. Zheng, M. Angelopoulos, A.J. Epstein, A.G. Mc Diarmid, Concentration dependence of aggregation of polyaniline in NMP solution and properties of resulting cast films, Macromolecules, 30 (1997) 2953–2955.
  35. S.G. Pawar, S.L. Patil, M.A. Chougule, A.T. Mane, D.M. Jundale, V.B. Patil, Synthesis and characterization of polyaniline: TiO2 nanocomposites, Int. J. Polym. Mat. Polym. Biomater., 59 (2010) 777–785.
  36. T. Anwer, M.O. Ansari, F. Mohammad, Dodecyl benzene sulfonic acid micelles assisted in situ preparation and enhanced thermoelectric performance of semiconducting polyaniline– zirconium oxide nanocomposites, J. Ind. Eng. Chem., 19 (2013) 1653–1658.
  37. S. Sultana, Rafiuddin, M.Z. Khan, K. Umar, Synthesis and characterization of copper ferrite nanoparticles doped polyaniline, J. Alloys Compd., 535 (2012) 44–49.
  38. A.A. Farghali, M. Moussa, M.H. Khedr, Synthesis and characterization of novel conductive and magnetic nano-composites, J. Alloys Compd., 499 (2010) 98–103.
  39. S. Sultana, Rafiuddin, M.Z. Khan, K. Umar, M. Muneer, Electrical, thermal, photocatalytic and antibacterial studies of metallic oxide nanocomposite doped polyaniline, J. Mater. Sci. Technol., 9 (2013) 795–800.
  40. F.C. Masim-Wu, C.H. Tsai, Y.F. Lin, M.L. Fu, M. Liu, F. Kang, Y.F. Wang, Synergistic effect of PANI-ZrO2 composite as antibacterial, anti-corrosion, and phosphate adsorbent material: synthesis, characterization and applications, Environ. Technol., 40 (2017) 1–13.
  41. H.M. Altass, S.K. Abd El Rahman, Surface and catalytic properties of triflic acid supported zirconia: effect of zirconia tetragonal phase, J. Mol. Catal. A: Chem., 411 (2016) 138–145.
  42. B.P. Prasanna, D.N. Avadhani, H.B. Muralidhara, K. Chaitra, V.R. Thomas, M. Revanasiddappa, N. Kathyayini, Synthesis of polyaniline/ZrO2 nanocomposites and their performance in AC conductivity and electrochemical supercapacitance, Bull. Mater. Sci., 39 (2016) 667–675.
  43. J.P. Pouget, C.H. Hsu, A.G. Mac Diarmid, A.J. Epstein, Structural investigation of metallic PAN-CSA and some of its derivatives, Synth. Met., 69 (1995) 119–120.
  44. H. Huang, Z.C. Guo, W. Zhu, F.C. Li, Preparation and characterization of conductive polyaniline/zirconia nanoparticles composites, Adv. Mater. Res., 221 (2011) 302–307.
  45. K. Gopalakrishnan, C. Ramesh, M. Elango, M. Thamilselvan, Optical and magnetic studies on Cu2O/PANI nanocomposite prepared by chemical polymerization method, ISRN Mat. Sci., 2014 (2014) 1–7.
  46. D.Y. Godovsky, A.E. Varfolomeev, D.F. Zaretsky, R.L.N. Chandrakanthi, A. Kündig, C. Weder, W. Caseri, Preparation of nanocomposites of polyaniline and inorganic semiconductors, J. Mater Chem., 11 (2001) 2465–2469.
  47. M.D.A. Khan, J. Akhtar, M.A. Malik, M. Akhtar, N. Revaprasadu, Phase-pure fabrication and shape evolution studies of SnS nanosheets, New J. Chem., 39 (2015) 9569.
  48. H.Q. Cao, X.Q. Qiu, B. Luo, Y. Liang, Y.H. Zhang, R.Q. Tan, M.J. Zhao, Q.M. Zhu, Synthesis and room‐temperature ultraviolet photoluminescence properties of zirconia nanowires, Adv. Funct. Mater., 3 (2004) 243–246.
  49. S. Verma, S. Rani, S. Kumar, Tetragonal zirconia quantum dots in silica matrix prepared by a modified sol–gel protocol, Appl. Phys. A, 124 (2018) 387.
  50. G.K. Sidhu, N. Kumar, R. Kumar, Study the structural and optical behaviour of polyaniline/ZrO2 nanocomposites, AIP Conf. Proc., 1953 (2018) 030220.
  51. S. Patnaik, K. Kumar Das, A. Mohanty, K. Parida, Enhanced photo catalytic reduction of Cr(VI) over polymer-sensitized g-C3N4/ZnFe2O4 and its synergism with phenol oxidation under visible light irradiation, Catal. Today, 315 (2018) 52–66.
  52. S. Vijayalakshmi, E. Kumar, P.S. Venkatesh, A. Raja, Preparation of zirconium oxide with polyaniline nanocatalyst for the decomposition of pharmaceutical industrial wastewater, Ionics, 26 (2020) 1507–1513.
  53. D.B. Hamal, K.J. Klabunde, Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2, J. Colloid Interface Sci., 311(2007) 514–522.
  54. K.I. Konstantinou, A.A. Triantafyllos, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal., B, 49 (2004) 1–14.
  55. C.S. Turchi, D.F. Ollis, Photocatalytic degradation of organic water contaminants: mechanism involving hydroxyl radical attack, J. Catal., 122 (1990) 178–192.
  56. C. Shifu, L. Yunzhang, Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst, Chemosphere, 67 (2007) 1010–1017.
  57. E. Evgenidou, I. Konstantinou, K. Fytianos, I. Poulios, T. Albanis, Photocatalytic oxidation of methyl parathion over TiO2 and ZnO suspensions, Catal. Today, 124 (2007) 156–162.
  58. A.A. Shah, S. Akhlaq, M. Sayed, S. Bilal, N. Ali, Synthesis and characterization of polyaniline–zirconium dioxide and polyaniline–cerium dioxide composites with enhanced photocatalytic degradation of rhodamine B dye, Chem. Pap., 72 (2018) 2523–2538.