References

  1. D. Saldivia, C. Rosales, R. Barraza, L. Cornejo, Computational analysis for a multi-effect distillation (MED) plant driven by solar energy in Chile, Renewable Energy, 132 (2019) 206–220.
  2. I.S. Al-Mutaz, I. Wazeer, Comparative performance evaluation of conventional multi-effect evaporation desalination processes, Appl. Therm. Eng., 73 (2014) 1192–11201.
  3. B. Han, Z.L. Liu, H.Q. Wu, Y.X. Li, Experimental study on a new method for improving the performance of thermal vapor compressors for multi-effect distillation desalination systems, Desalination, 344 (2014) 391–395.
  4. R.K. Kamali, S. Mohebinia, Experience of design and optimization of multi-effects desalination systems in Iran, Desalination, 222 (2008) 639–645.
  5. R. Borsani, S. Rebagliati, Fundamentals and costing of MSF desalination plants and comparison with other technologies, Desalination, 182 (2005) 29–37.
  6. R. Matz, U. Fisher, A comparison of the relative economics of sea water desalination by vapour compression and reverse osmosis for small to medium capacity plants, Desalination, 36 (1981) 137–151.
  7. Z. Zimerman, Development of large capacity high efficiency mechanical vapor compression (MVC) units, Desalination, 96 (1994) 51–58.
  8. J.M. Veza, Mechanical vapour compression desalination plants — a case study, Desalination, 101 (1995) 1–10.
  9. G. Kronenberg, F. Lokiec, Low-temperature distillation processes in single- and dual-purpose plants, Desalination, 136 (2001) 189–197.
  10. H.S. Aybar, Analysis of a mechanical vapor compression desalination system, Desalination, 142 (2002) 181–186.
  11. R. Bahar, M.N.A. Hawlader, L.S. Woei, Performance evaluation of a mechanical vapor compression desalination system, Desalination, 166 (2004) 123–127.
  12. F. Al-Juwayhel, H. El-Dessouky, H. Ettouney, Analysis of singleeffect evaporator desalination systems combined with vapor compression heat pumps, Desalination, 114 (1997) 253–275.
  13. H. Ettouney, Design of single-effect mechanical vapor compression, Desalination, 190 (2006) 1–15.
  14. M. Ibrahimi, A. Arbaoui, Y. Aoura, Design analysis of MVC desalination unit powered by a grid connected photovoltaic system, Energy Procedia, 139 (2017) 524–529.
  15. H. Dahmardeh, H.A. Akhlaghi Amiri, S.M. Nowee, Evaluation of mechanical vapor recompression crystallization process for treatment of high salinity wastewater, Chem. Eng. Process. Process Intensif., 145 (2019) 107682.
  16. A.S. Nafey, H.E.S. Fath, A.A. Mabrouk, Thermoeconomic design of a multi-effect evaporation mechanical vapor compression (MEE–MVC) desalination process, Desalination, 230 (2008) 1–15.
  17. M.A. Sharaf, A.S. Nafey, L. García-Rodríguez, Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes, Energy, 36 (2011) 2753–2764.
  18. M.A. Jamil, S.M. Zubair, On thermoeconomic analysis of a single-effect mechanical vapor compression desalination system, Desalination, 420 (2017) 292–307.
  19. R. Schwantes, K. Chavan, D. Winter, C. Felsmann, J. Pfafferott, Techno-economic comparison of membrane distillation and MVC in a zero liquid discharge application, Desalination, 428 (2018) 50–68.
  20. M.L. Elsayed, O. Mesalhy, R.H. Mohammed, L.C. Chow, Performance modeling of MED-MVC systems: exergy-economic analysis, Energy, 166 (2019) 552–568.
  21. M.A. Jamil, S.M. Zubair, Effect of feed flow arrangement and number of evaporators on the performance of multieffect mechanical vapor compression desalination systems, Desalination, 429 (2018) 76–87.
  22. V.K. Patel, R.V. Rao, Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique, Appl. Therm. Eng., 30 (2010) 1417–1425.
  23. P. Palenzuela, A.S. Hassan, G. Zaragoza, D.C. Alarcón-Padilla, Steady state model for multi-effect distillation case study: Plataforma Solar de Almería MED pilot plant, Desalination, 337 (2014) 31–42.
  24. H. El-Dessouky, I. Alatiqi, S. Bingulac, H. Ettouney, Steady-state analysis of the multiple effect evaporation desalination process, Chem. Eng. Technol., 21 (1998) 437–451.
  25. G.P. Thiel, E.W. Tow, L.D. Banchik, H.W. Chung, J.H. Lienhard V, Energy consumption in desalinating produced water from shale oil and gas extraction, Desalination, 366 (2015) 94–112.
  26. M.N. Labib, S.S. Kim, D. Choi, T. Utomo, H. Chung, H. Jeong, Numerical investigation of the effect of inlet skew angle on the performance of mechanical vapor compressor, Desalination, 284 (2012) 66–76.
  27. M.H. Khademi, M.R. Rahimpour, A. Jahanmiri, Simulation and optimization of a six-effect evaporator in a desalination process, Chem. Eng. Process. Process Intensif., 48 (2009) 339–347.
  28. H.W. Chung, K.G. Nayar, J. Swaminathan, K.M. Chehayeb, J.H. Lienhard V, Thermodynamic analysis of brine management methods: Zero-discharge desalination and salinity-gradient power production, Desalination, 404 (2017) 291–303.
  29. A.M. El-Nashar, Economics of small solar-assisted multipleeffect stack distillation plants, Desalination, 130 (2000) 201–215.
  30. M. Papapetrou, A. Cipollina, U. La Commare, G. Micale, G. Zaragoza, G. Kosmadakis, Assessment of methodologies and data used to calculate desalination costs, Desalination, 419 (2017) 8–19.
  31. W. El-Mudir, M. El-Bousiffi, S. Al-Hengari, Performance evaluation of a small size TVC desalination plant, Desalination, 165 (2004) 269–279.
  32. A. Piacentino, Application of advanced thermodynamics, thermoeconomics and exergy costing to a multiple effect distillation plant: in-depth analysis of cost formation process, Desalination, 371 (2015) 88–103.
  33. Y.M. El-Sayed, Designing desalination systems for higher productivity, Desalination, 134 (2001) 129–158.
  34. Y. Wang, N. Lior, Thermoeconomic analysis of a lowtemperature multi-effect thermal desalination system coupled with an absorption heat pump, Energy, 36 (2011) 3878–3887.