References

  1. K. Kümmerer, Significance of antibiotics in the environment, J. Antimicrob. Chemother., 52 (2003) 5–7.
  2. R. Zhang, K. Yu, A. Li, Y. Wang, C. Pan, X. Huang, Antibiotics in coral reef fishes from the South China Sea: occurrence, distribution, bioaccumulation, and dietary exposure risk to human, Sci. Total Environ., 704 (2020), doi: 10.1016/j. scitotenv.2019.135288.
  3. J.F. Leal, E.B.H. Santos, V.I. Esteves, Oxytetracycline in intensive aquaculture: water quality during and after its administration, environmental fate, toxicity and bacterial resistance, Rev. Aquacult., 11 (2019) 1176–1194.
  4. K.-J. Choi, H.-J. Son, S.-H. Kim, Ionic treatment for removal of sulfonamide and tetracycline classes of antibiotic, Sci. Total Environ., 387 (2007) 247–256.
  5. X. Yu, H. Yang, J. Liu, L. Wang, M. Guo, Study on adsorption of terramycini hydrochloridum from aquaculture wastewater using modified activated carbon fiber, Desal. Water Treat., 146 (2019) 351–361.
  6. B. Debnath, M. Majumdar, M. Bhowmik, K.L. Bhowmik, A. Debnath, D.N. Roy, The effective adsorption of tetracycline onto zirconia nanoparticles synthesized by novel microbial green technology, J. Environ. Manage., 261 (2020), doi: 10.1016/j. jenvman.2020.110235.
  7. J. Miao, F. Wang, Y. Chen, Y. Zhu, Y. Zhou, S. Zhang, The adsorption performance of tetracyclines on magnetic graphene oxide: a novel antibiotics absorbent, Appl. Surf. Sci., 475 (2019) 549–558.
  8. M. Li, Y. Liu, C. Yang, S. Liu, X. Tan, Y. He, N. Liu, L. Zhou, X. Cai, J. Wen, Effects of heteroaggregation with metal oxides and clays on tetracycline adsorption by graphene oxide, Sci. Total Environ., 719 (2020), doi: 10.1016/j.scitotenv.2020.137283.
  9. R. Anjali, S. Shanthakumar, Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes, J. Environ. Manage., 246 (2019) 51–62.
  10. Y. Su, X. Wang, S. Dong, S. Fu, D. Zhou, B.E. Rittmann, Towards a simultaneous combination of ozonation and biodegradation for enhancing tetracycline decomposition and toxicity elimination, Bioresour. Technol., 304 (2020), doi: 10.1016/j. biortech.2020.123009.
  11. Q. Xu, Q. Zhou, M. Pan, L. Dai, Interaction between chlortetracycline and calcium-rich biochar: enhanced removal by adsorption coupled with flocculation, Chem. Eng. J., 382 (2020), doi: 10.1016/j.cej.2019.122705.
  12. J. Liu, X. Yu, L. Wang, M. Guo, W. Zhu, S. Tian, Photocatalytic degradation of chlortetracycline hydrochloride in marine aquaculture wastewater under visible light irradiation with CuO/ZnO, Water Sci. Technol., 80 (2019) 1249–1256.
  13. Y. Garcia-Basabe, I. Rodriguez-Iznaga, L.C. de Menorval, P. Llewellyn, G. Maurin, D.W. Lewis, R. Binions, M. Autie, A.R. Ruiz-Salvador, Step-wise dealumination of natural clinoptilolite: structural and physicochemical characterization, Microporous Mesoporous Mater., 135 (2010) 187–196.
  14. M. Harja, G. Ciobanu, Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite, Sci. Total Environ., 628 (2018) 36–43.
  15. E. Ou, J. Zhou, S. Mao, J. Wang, F. Xia, L. Min, Highly efficient removal of phosphate by lanthanum-doped mesoporous SiO2, Colloids Surf., A, 308 (2007) 47–53.
  16. H. Li, J. Ru, W. Yin, X. Liu, J. Wang, W. Zhang W, Removal of phosphate from polluted water by lanthanum doped vesuvianite, J. Hazard. Mater., 168 (2009) 326–330.
  17. J. Zhang, Z. Shen, W. Shan, Z. Chen, Z. Mei, Y. Lei, W. Wang, Adsorption behavior of phosphate on Lanthanum(III) doped mesoporous silicates material, J. Environ. Sci., 22 (2010) 507–511.
  18. R.L. Tseng, F.C. Wu, R.S. Juang, Characteristics and applications of the Lagergren’s first-order equation for adsorption kinetics, J. Taiwan Inst. Chem. Eng., 41 (2010) 661–669.
  19. M.I. El-Khaiary, G.F. Malash, Y.S. Ho, On the use of linearized pseudo-second-order kinetic equations for modeling adsorption systems, Desalination, 257 (2010) 93–101.
  20. J. Liu, Q. Zhou, J. Chen, L. Zhang, N. Chang, Phosphate adsorption on hydroxyl–iron–lanthanum doped activated carbon fiber, Chem. Eng. J., 215 (2013) 859–867.
  21. K. Vijayaraghavan, J. Mao, Y.S. Yun, Biosorption of methylene blue from aqueous solution using free and polysulfoneimmobilized Corynebacterium glutamicum: batch and column studies, Bioresour. Technol., 99 (2008) 2864–2871.
  22. A.G. Ritchie, Alternative to the Elovich equation for the kinetics of adsorption of gases on solids, J. Chem. Soc., Faraday Trans. 1, 73 (1977) 1650–1653.
  23. A. Alahabadi, A. Hosseini-Bandegharaei, G. Moussavi, B. Amin, A. Rastegar, H. Karimi-Sani, M. Fattah, M. Miri, Comparing adsorption properties of NH4Cl-modified activated carbon towards chlortetracycline antibiotic with those of commercial activated carbon, J. Mol. Liq., 232 (2017) 367–381.
  24. S.A. Ahmed, R.M.M. El-Enin, T. El-Nabarawy, Adsorption properties of activated carbon prepared from pre-carbonized petroleum coke in the removal of organic pollutants from aqueous solution, Carbon Lett., 12 (2011) 152–161.
  25. W.T. Tsai, C.W. Lai, K.J. Hsien, Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution, J. Colloid Interface Sci., 263 (2003) 29–34.
  26. N. Boukhalfa, M. Boutahala, N. Djebri, A. Idris, Kinetics, thermodynamics, equilibrium isotherms, and reusability studies of cationic dye adsorption by magnetic alginate/ oxidized multiwalled carbon nanotubes composites, Int. J. Biol. Macromol., 123 (2019) 539–548.
  27. E. Wibowo, M. Rokhmat, M. Abdullah, Reduction of seawater salinity by natural zeolite (Clinoptilolite): adsorption isotherms, thermodynamics and kinetics, Desalination, 409 (2017) 146–156.
  28. L. Yu, Z. Luo, Y. Zhang, S. Wu, C. Yang, J. Cheng, Contrastive removal of oxytetracycline and chlortetracycline from aqueous solution on Al-MOF/GO granules, Environ. Sci. Pollut. Res., 26 (2019) 3685–3696.
  29. S. Ramanayaka, D.C.W. Tsang, D. Hou, Y.S. Ok, M. Vithanage, Green synthesis of graphitic nanobiochar for the removal of emerging contaminants in aqueous media, Sci. Total Environ., 706 (2020), doi: 10.1016/j.scitotenv.2019.135725.