References

  1. X. Chen, J. Zhu, Q. Xi, W. Yang, A high performance electrochemical sensor for acetaminophen based on singlewalled carbon nanotube–graphene nanosheet hybrid films, Sens. Actuators, B, 161 (2012) 648–654.
  2. R.S. Andulescu, S. Mirel, R. Oprean, The development of spectrophotometric and electroanalytical methods for ascorbic acid and acetaminophen and their applications in the analysis of effervescent dosage forms, J. Pharm. Biomed. Anal., 23 (2000) 77–87.
  3. C. Nebot, S.W. Gibb, K.G. Boyd, Quantification of human pharmaceuticals in water samples by high performance liquid chromatography–tandem mass spectrometry, Anal. Chim. Acta, 598 (2007) 87–94.
  4. W. Ruengsitagoon, S. Liawruangrath, A. Townshend, Injection chemiluminescence determination of paracetamol, Talanta, 69 (2006) 976–983.
  5. A. Babaei, M. Afrasiabi, M. Babazadeh, A glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite as a new sensor for simultaneous determination of acetaminophen and mefenamic acid in pharmaceutical preparations and biological samples, Electroanalysis, 22 (2010) 1743–1749.
  6. C.B. Jacobs, M.J. Peairs, B.J. Venton, Review: carbon nanotube based electrochemical sensors for biomolecules, Anal. Chim. Acta, 662 (2010) 105–127.
  7. H. Beitollahi, H. Karimi-Maleh, H. Khabazzadeh, Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydroquinazolinyl)-N′-phenyl-hydrazinecarbothioamide, Anal. Chem., 80 (2008) 9848–9851.
  8. S. Tajik, M.A. Taher, H. Beitollahi, Magnifier in DNA biosensor using double-stranded DNA modified pencil graphite electrode based on guanine and adenine signals, J. Electroanal. Chem., 720–721 (2014) 134–138.
  9. H. Soltani, H. Beitollahi, A.H. Hatefi-Mehrjardi, S. Tajik, M. Torkzadeh-Mahani, Voltammetric determination of glutathione using a modified single walled carbon nanotubes paste electrode, Anal. Bioanal. Electrochem., 6 (2014) 67–79.
  10. H. Beitollahi, S. Tajik, H. Parvan, H. Soltani, A. Akbari, M.H. Asadi, Nanostructured based electrochemical sensor for voltammetric determination of ascorbic acid in pharmaceutical and biological samples, Anal. Bioanal. Electrochem., 6 (2014) 54–66.
  11. M.M. Motaghi, H. Beitollahi, S. Tajik, R. Hosseinzadeh, Nanostructure electrochemical sensor for voltammetric determination of vitamin C in the presence of vitamin B6: application to real sample analysis, Int. J. Electrochem. Sci., 11 (2016) 7849–7860.
  12. M.R. Ganjali, Z. Dourandish, H. Beitollahi, S.Tajik, L. Hajiaghababaei, B. Larijani, Highly sensitive determination of theophylline based on graphene quantum dots modified electrode, Int. J. Electrochem. Sci., 13 (2018) 2448–2461.
  13. S. Esfandiari Baghbamidi, H. Beitollahi, S. Tajik, R. Hosseinzadeh, Voltammetric sensor based on 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol, Int. J. Electrochem. Sci., 11 (2016) 10874–10883.
  14. S. Pedersen-Bjergaard, K.E. Rasmussen, Liquid-phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid–liquid extraction, J. Chromatogr. A, 1184 (2008) 132–142.
  15. Z. Es’haghi, M.A. Golsefidi, A. Saify, A.A. Tanha, Z. Rezaeifar, Z. Alian-Nezhadi, Carbon nanotube reinforced hollow fiber solid/liquid phase microextraction: a novel extraction technique for the measurement of caffeic acid in Echinacea purpurea herbal extracts combined with high-performance liquid chromatography, J. Chromatogr. A, 1217 (2010) 2768–2775.
  16. Z. Es’haghi, M.A.K. Khooni, T. Heidari, Determination of brilliant green from fish pond water using carbon nanotube assisted pseudo-stir bar solid/liquid microextraction combined with UV–Vis spectroscopy–diode array detection, Spectrochim. Acta, Part A, 79 (2011) 603–607.
  17. J. Wang, A.N. Kawde, E. Sahlin, Renewable pencil electrodes for highly sensitives tripping potentiometric measurements of DNA and RNA, Analyst, 125 (2000) 5–7.
  18. A. Abo-Hamad, M.A. Al-Saadi, M. Hayyan, I. Juneidi, M.A. Hashim, Ionic liquid-carbon nanomaterial hybrids for electrochemical sensor applications: a review, Electrochim. Acta, 193 (2016) 321–343.
  19. M. Hasanzadeh, N. Shadjou, M. Eskandani, M.D.L. Guardia, Room-temperature ionic liquid-based electrochemical nanobiosensors: a review, Trends Anal. Chem., 41 (2012) 58–74.
  20. J. Szejtli, Cyclodextrins and their inclusion complexes, Akadémiai Kiadó Budapest, (1982) 4–12.
  21. G. Alarcón-ángeles, M. Guix, W.C. Silva, M.T. Ramírez-Silva, M. Palomar-Pardavé, M. Romero-Romo, A. Merkoci, Enzyme entrapment by β-cyclodextrin electropolymerization onto a carbon nanotubes-modified screen-printed electrode, Biosens. Bioelectron., 26 (2010) 1768–1773.
  22. A. Abbaspour, A. Noori, A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine, Biosens. Bioelectron., 26 (2011) 4674–4680.
  23. G. Zhu, P. Gai, Y. Yang, X. Zhang, J. Chen, Electrochemical sensor for naphthols based on gold nanoparticles/hollow nitrogen-doped carbon microsphere hybrids functionalized with SH-β-cyclodextrin, Anal. Chim. Acta, 723 (2012) 33–38.
  24. G.H. Wu, Y.F. Wu, X.W. Liu, M.C. Rong, X.M. Chen, X. Chen, An electrochemical ascorbic acid sensor based on palladium nanoparticles supported on graphene oxide, Anal. Chim. Acta, 745 (2012) 33–37.
  25. B. Yuan, C. Xu, D. Deng, Y. Xing, L. Liu, H. Pang, D. Zhang, Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor, Electrochim. Acta, 88 (2013) 708–712.
  26. S. Konwer, A.K. Guha, S.K. Dolui, Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials, J. Mater. Sci., 48 (2013) 1729–1739.
  27. M. Zhang, H.T. Zhao, X. Yang, A.J. Dong, H. Zhang, J. Wang, G.Y. Liu, X.C. Zhai, A simple and sensitive electrochemical sensor for new neonicotinoid insecticide Paichongding in grain samples based on β-cyclodextrin-graphene modified glassy carbon electrode, Sens. Actuators, B, 229 (2016) 190–199.
  28. S. Wu, X. Lan, L. Cui, L. Zhang, S. Tao, H. Wang, M. Han, Z. Liu, C. Meng, Application of graphene for preconcentration and highly sensitive stripping voltammetric analysis of organophosphate pesticide, Anal. Chim. Acta, 699 (2011) 170–176.
  29. M. Chen, Y. Meng, W. Zhang, J. Zhou, J. Xie, G. Diao, β-Cyclodextrin polymer functionalized reduced-graphene oxide: application for electrochemical determination imidacloprid, Electrochim. Acta, 108 (2013) 1–9.
  30. A.Z.M. Badruddoza, A.S.H. Tay, P.Y. Tan, K. Hidajat, M.S. Uddin, Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies, J. Hazard. Mater., 185 (2011) 1177–1186.
  31. W. Liu, C. Li, Y. Gu, L. Tang, Z. Zhang, M. Yang, One-step synthesis of β-cyclodextrin functionalized graphene/Ag nanocomposite and its application in sensitive determination of 4-nitrophenol, Electroanalysis, 25 (2013) 2367–2376.
  32. A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited, J. Phys. Chem. B, 102 (1998) 4477–4482.
  33. S. Wang, Y. Li, X. Fan, F. Zhang, G. Zhang, β-Cyclodextrin functionalized graphene oxide: an efficient and recyclable adsorbent for the removal of dye pollutants, Front. Chem. Sci. Eng., 9 (2015) 77–83.
  34. J.H. Suh, Y.Y. Lee, H.J. Lee, M. Kang, Y. Hur, S.N. Lee, D.H. Yang, S.B. Han, Dispersive liquid–liquid microextraction based on solidification of floating organic droplets followed by high performance liquid chromatography for the determination of duloxetine in human plasma, J. Pharm. Biomed. Anal., 75 (2013) 214–219.
  35. A. Gjelstad, T.M. Andersen, K.E. Rasmussen, S. Pedersen- Bjergaard, Microextraction across supported liquid membranes forced by pH gradients and electrical fields, J. Chromatogr. A, 1157 (2007) 38–45.
  36. B. Habibi, M. Jahanbakhshi, M.H. Pournaghi-Azar, Differential pulse voltammetric simultaneous determination of acetaminophen and ascorbic acid using single-walled carbon nanotube-modified carbon-ceramic electrode, Anal. Biochem., 411 (2011) 167–175.
  37. B.R. Adhikari, M. Govindhan, A. Chen, Sensitive detection of acetaminophen with graphene-based electrochemical sensor, Electrochim. Acta, 162 (2015) 198–204.
  38. X.S. Guan, H. Zhang, J. Zheng, Electrochemical behavior and differential pulse voltammetric determination of paracetamol at a carbon ionic liquid electrode, Anal. Bioanal. Chem., 391 (2008) 1049–1055.
  39. S.F. Wang, F. Xie, R.F. Hu, Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen, Sens. Actuators, B, 123 (2007) 495–500.
  40. A. Afkhami, H. Khoshsafar, H. Bagheri, T. Madrakian, Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids by graphene–CoFe2O4 nanocomposite modified carbon paste electrode, Sens. Actuators, B, 203 (2014) 909–918.
  41. A. Afkhami, H. Khoshsafar, H. Bagheri, T. Madrakian, Preparation of NiFe2O4/graphene nanocomposite and its application as a modifier for the fabrication of an electrochemical sensor for the simultaneous determination of tramadol and acetaminophen, Anal. Chim. Acta, 831 (2014) 50–59.
  42. H. Khoshsafar, M.K. Rofouei, H. Bagheri, R. Javad Kalbasi, Ordered mesoporous carbon/poly (2-hydroxyethyl methacrylate/Ag nanoparticle composite modified glassy carbon electrode; an amplified sensor for simultaneous determination of acetaminophen and domperidone, Electroanalysis, 30 (2018) 2454–2461.