References

  1. M. Kobya, R.D.C. Soltani, P.I. Omwene, A. Khataee, A review on decontamination of arsenic-contained water by electrocoagulation: reactor configurations and operating cost along with removal mechanisms, Environ. Technol. Innovation, 17 (2020) 100519.
  2. S. Alka, S. Shahir, N. Ibrahim, T.-T. Chai, Z. Mohd Bahari, F. Abd Manan, The role of plant growth promoting bacteria on arsenic removal: a review of existing perspectives, Environ. Technol. Innovation, 17 (2020) 100602.
  3. P. Kumarathilaka, S. Seneweera, Y.S. Ok, A.A. Meharg, J. Bundschuh, Mitigation of arsenic accumulation in rice: an agronomical, physico-chemical, and biological approach – a critical review, Crit. Rev. Environ. Sci., 50 (2020) 31–71.
  4. S.K. Gupta, K.Y. Chen, Arsenic removal by adsorption, Water Pollut. Control Fed., 50 (1978) 493–506.
  5. A. Maiti, S. DasGupta, J.K. Basu, S. De, Batch and column study: adsorption of arsenate using untreated laterite as adsorbent, Ind. Eng. Chem. Res., 47 (2008) 1620–1629.
  6. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  7. M.E. Argun, S. Dursun, C. Ozdemir, M. Karatas, Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics, J. Hazard. Mater., 141 (2007) 77–85.
  8. A. Demirbas, Heavy metal adsorption onto agro-based waste materials: a review, J. Hazard. Mater., 157 (2008) 220–229.
  9. D. Sud, G. Mahajan, M.P. Kaur, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions–a review, Bioresour. Technol., 99 (2008) 6017–6027.
  10. S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, A review of potentially low-cost sorbents for heavy metals, Water Res., 33 (1999) 2469–2479.
  11. D. Gnanasangeetha, D. SaralaThambavani, Modelling of As3+ adsorption from aqueous solution using Azadirachta indica by artificial neural network, Desal. Water Treat., 56 (2015) 1839–1854.
  12. T.R. Choudhury, M. Amin, S. Quraishi, A. Mustafa, Arsenic(III) removal from real-life groundwater by adsorption on Neem Bark (Azadirachta indica), Int. Res. J. Pure Appl. Chem., (2014) 594–604.
  13. P. Roy, U. Dey, S. Chattoraj, D. Mukhopadhyay, N.K. Mondal, Modeling of the adsorptive removal of arsenic(III) using plant biomass: a bioremedial approach, Appl. Water Sci., 7 (2017) 1307–1321.
  14. A. Bhattacharya, S. Mandal, S. Das, Adsorption of Zn(II) from aqueous solution by using different adsorbents, Chem. Eng. J., 123 (2006) 43–51.
  15. D. Tiwari, S.P. Mishra, M. Mishra, R. Dubey, Biosorptive behavior of mango (Mangifera indica) and neem (Azadirachta indica) bark for Hg2+, Cr3+, and Cd2+ toxic ions from aqueous solutions: a radiotracer study, Appl. Radiat. Isot., 50 (1999) 631–642.
  16. A. Bhattacharya, T. Naiya, S. Mandal, S. Das, Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents, Chem. Eng. J., 137 (2008) 529–541.
  17. R. Srivastava, D.C. Rupainwar, A comparative evaluation for adsorption of dye on Neem bark and Mango bark powder, Indian J. Chem. Technol., 18 (2011) 67–75.
  18. S.W. Al Rmalli, C.F. Harrington, M. Ayub, P.I. Haris, A biomaterial based approach for arsenic removal from water, J. Environ. Monit., 7 (2005) 279–282.
  19. S. Zhu, J. Zhao, N. Zhao, X. Yang, C. Chen, J. Shang, Goethite modified biochar as a multifunctional amendment for cationic Cd(II), anionic As(III), roxarsone, and phosphorus in soil and water, J. Cleaner Prod., 247 (2020) 119579.
  20. H. Lyu, J. Tang, M. Cui, B. Gao, B. Shen, Biochar/iron (BC/Fe) composites for soil and groundwater remediation: synthesis, applications, and mechanisms, Chemosphere, 246 (2020) 125609.
  21. S. Ali, M. Rizwan, M.B. Shakoor, A. Jilani, R. Anjum, High sorption efficiency for As(III) and As(V) from aqueous solutions using novel almond shell biochar, Chemosphere, 243 (2020) 125330.
  22. T. Chen, X. Quan, Z. Ji, X. Li, Y. Pei, Synthesis and characterization of a novel magnetic calcium-rich nanocomposite and its remediation behavior for As(III) and Pb(II) co-contamination in aqueous systems, Sci. Total Environ., 706 (2020) 135122.
  23. J. Cui, Q. Jin, Y. Li, F. Li, Oxidation and removal of As(III) from soil using novel magnetic nanocomposite derived from biomass waste, Environ. Sci. Nano, 6 (2019) 478–488.
  24. L. Verma, M.A. Siddique, J. Singh, R.N. Bharagava, As(III) and As(V) removal by using iron impregnated biosorbents derived from waste biomass of Citrus limmeta (peel and pulp) from the aqueous solution and ground water, J. Environ. Manage., 250 (2019) 109452.
  25. H. Zeng, Y. Yu, F. Wang, J. Zhang, D. Li, Arsenic(V) removal by granular adsorbents made from water treatment residuals materials and chitosan, Colloids Surf., A, 585 (2020) 124036.
  26. M.K. Mondal, R. Garg, A comprehensive review on removal of arsenic using activated carbon prepared from easily available waste materials, Environ. Sci. Pollut. Res., 24 (2017) 13295–13306.
  27. I. Shah, R. Adnan, W.S. Wan Ngah, N. Mohamed, Iron impregnated activated carbon as an efficient adsorbent for the removal of Methylene blue: regeneration and kinetics studies, PLoS One, 10 (2015) e0122603.
  28. Y. Sudaryanto, T. Deitiana, W. Irawaty, H. Hindarso, S. Ismadji, High surface area activated carbon prepared from cassava peel by chemical activation, Bioresour. Technol., 97 (2006) 734–739.
  29. S. Rahdar, M. Taghavi, R. Khaksefidi, S. Ahmadi, Adsorption of arsenic(V) from aqueous solution using modified saxaul ash: isotherm and thermodynamic study, Appl. Water Sci., 9 (2019) 87.
  30. Gh. Ghanizadeh, M.H. Ehrampoush, M.T. Ghaneian, Application of iron impregnated activated carbon for removal of arsenic from water, Iran. J. Environ. Health Sci. Eng., (ISSN: p-ISSN: 1735–1979), 7 (2010) 145–156.
  31. Q. Chang, W. Lin, W.-c. Ying, Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water, J. Hazard. Mater., 184 (2010) 515–522.
  32. M.N. Amin, S. Kaneco, T. Kitagawa, A. Begum, H. Katsumata, T. Suzuki, K. Ohta, Removal of arsenic in aqueous solutions by adsorption onto waste rice husk, Ind. Eng. Chem. Res., 45 (2006) 8105–8110.
  33. B.M. Lekić, D.D. Marković, V.N. Rajaković-Ognjanović, A.R. Dukić, L.V. Rajaković, Arsenic removal from water using industrial by-products, J. Chem., 2013 (2013) 9.
  34. M.A. Alam, W.A. Shaikh, M.O. Alam, T. Bhattacharya, S. Chakraborty, B. Show, I. Saha, Adsorption of As(III) and As(V) from aqueous solution by modified Cassia fistula (golden shower) biochar, Appl. Water Sci., 8 (2018) 198.
  35. M.L. Paul, J. Samuel, N. Chandrasekaran, A. Mukherjee, Comparative kinetics, equilibrium, thermodynamic and mechanistic studies on biosorption of hexavalent chromium by live and heat killed biomass of Acinetobacter junii VITSUKMW2, an indigenous chromite mine isolate, Chem. Eng. J., 187 (2012) 104–113.
  36. S. Nethaji, A. Sivasamy, A.B. Mandal, Preparation and characterization of corn cob activated carbon coated with nanosized magnetite particles for the removal of Cr(VI), Bioresour. Technol., 134 (2013) 94–100.
  37. M. Dinesh, S. Ankur, V.K. Singh, M. Alexandre-Franco, C.U. Pittman Jr., Development of magnetic activated carbon from almond shells for trinitrophenol removal from water, Chem. Eng. J., 172 (2011) 1111–1125.
  38. T. Depci, Comparison of activated carbon and iron impregnated activated carbon derived from Gölbaşı lignite to remove cyanide from water, Chem. Eng. J., 181 (2012) 467–478.
  39. L.G. Sorokhaibam, V.M. Bhandari, M.S. Salvi, S. Jain, S.D. Hadawale, V.V. Ranade, Development of newer adsorbents: activated carbons derived from carbonized Cassia fistula, Ind. Eng. Chem. Res., 54 (2015) 11844–11857.
  40. D.D. Gang, B. Deng, L. Lin, As(III) removal using an ironimpregnated chitosan sorbent, J. Hazard. Mater., 182 (2010) 156–161.
  41. B. Sunkara, J. Zhan, I. Kolesnichenko, Y. Wang, J. He, J.E. Holland, G.L. McPherson, V.T. John, Modifying metal nanoparticle placement on carbon supports using an aerosolbased process, with application to the environmental remediation of chlorinated hydrocarbons, Langmuir, 27 (2011) 7854–7859.
  42. M. Descostes, F. Mercier, N. Thromat, C. Beaucaire, M. Gautier-Soyer, Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium, Appl. Water Sci., 165 (2000) 288–302.
  43. M.B. Baskan, A. Pala, Batch and fixed-bed column studies of arsenic adsorption on the natural and modified clinoptilolite, Water Air Soil Pollut., 225 (2014) 1798.
  44. P. Chutia, S. Kato, T. Kojima, S. Satokawa, Arsenic adsorption from aqueous solution on synthetic zeolites, J. Hazard. Mater., 162 (2009) 440–447.
  45. H. Nollet, M. Roels, P. Lutgen, P. Van der Meeren, W. Verstraete, Removal of PCBs from wastewater using fly ash, Chemosphere, 53 (2003) 655–665.
  46. R. Ansari, M. Sadegh, Application of activated carbon for removal of arsenic ions from aqueous solutions, E-J. Chem., 4 (2007) 103–108.
  47. L.H. Velazquez-Jimenez, J.A. Arcibar-Orozco, J.R. Rangel-Mendez, Overview of As(V) adsorption on Zr-functionalized activated carbon for aqueous streams remediation, J. Environ. Manage., 212 (2018) 121–130.
  48. N.D.G. Chau, Z. Sebesvari, W. Amelung, F.G. Renaud, Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces, Environ. Sci. Pollut. Res., 22 (2015) 9042–9058.
  49. Y. Li, F.S. Zhang, F.R. Xiu, Arsenic(V) removal from aqueous system using adsorbent developed from a high iron-containing fly ash, Sci. Total Environ., 407 (2009) 5780–5786.
  50. M. Macedo-Miranda, M. Olguin, Arsenic sorption by modified clinoptilolite–heulandite rich tuffs, J. Inclusion Phenom. Macrocyclic Chem., 59 (2007) 131–142.
  51. C.-S. Jeon, K. Baek, J.-K. Park, Y.-K. Oh, S.-D. Lee, Adsorption characteristics of As(V) on iron-coated zeolite, J. Hazard. Mater., 163 (2009) 804–808.
  52. X. Liu, H. Ao, X. Xiong, J. Xiao, J. Liu, Arsenic removal from water by iron-modified bamboo charcoal, Water Air Soil Pollut., 223 (2012) 1033–1044.
  53. H.L. Rahman, H. Erdem, M. Sahin, M. Erdem, Iron-incorporated activated carbon synthesis from biomass mixture for enhanced arsenic adsorption, Water Air Soil Pollut., 231 (2020) 6.
  54. T.G. Asere, S. Mincke, J. De Clercq, K. Verbeken, D.A. Tessema, F. Fufa, C.V. Stevens, G. Du Laing, Removal of arsenic(V) from aqueous solutions using chitosan–red scoria and chitosan– pumice blends, Int. J. Environ. Res. Public Health, 14 (2017) 895.
  55. S. Goldberg, Chemical modeling of anion competition on goethite using the constant capacitance model, Soil Sci. Soc. Am. J., 49 (1985) 851–856.
  56. M. Mkandawire, Y.V. Lyubun, P.V. Kosterin, E.G. Dudel, Toxicity of arsenic species to Lemna gibba L. and the influence of phosphate on arsenic bioavailability, Environ. Toxicol., 19 (2004) 26–34.
  57. M.A. Rahman, H. Hasegawa, K. Ueda, T. Maki, M.M. Rahman, Arsenic uptake by aquatic macrophyte Spirodela polyrhiza L.: interactions with phosphate and iron, J. Hazard. Mater., 160 (2008) 356–361.
  58. X. Meng, S. Bang, G.P. Korfiatis, Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride, Water Res., 34 (2000) 1255–1261.
  59. S. Ahmadi, C.A. Igwegbe, Adsorptive removal of phenol and aniline by modified bentonite: adsorption isotherm and kinetics study, Appl. Water Sci., 8 (2018) 170.
  60. S. Ahmadi, A. Banach, F.K. Mostafapour, D. Balarak, Study survey of cupric oxide nanoparticles in removal efficiency of ciprofloxacin antibiotic from aqueous solution: adsorption isotherm study, Desal. Water Treat., 89 (2017) 297–303.
  61. A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR J. Appl. Chem., 3 (2012) 38–45.
  62. N.K. Mondal, R. Bhaumik, T. Baur, B. Das, P. Roy, J.K. Datta, Studies on defluoridation of water by tea ash: an unconventional biosorbent, Chem. Sci. Trans., 1 (2012) 239–256.
  63. M. Chiban, G. Carja, G. Lehutu, F. Sinan, Equilibrium and thermodynamic studies for the removal of As(V) ions from aqueous solution using dried plants as adsorbents, Arabian J. Chem., 9 (2016) S988-S999.
  64. P.S. Blanes, M.E. Bordoni, J.C. González, S.I. García, A.M. Atria, L.F. Sala, S.E. Bellú, Application of soy hull biomass in removal of Cr(VI) from contaminated waters: kinetic, thermodynamic and continuous sorption studies, J. Environ. Chem. Eng., 4 (2016) 516–526.
  65. S.S. Bagali, B.S. Gowrishankar, A.S. Roy, Optimization, kinetics, and equilibrium studies on the removal of lead(II) from an aqueous solution using banana pseudostem as an adsorbent, Engineering, 3 (2017) 409–415.
  66. S. Ghorai, K. Pant, Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina, Sep. Purif. Technol., 42 (2005) 265–271.
  67. L. Liu, S. Fan, Y. Li, Removal Behavior of Methylene blue from aqueous solution by tea waste: kinetics, isotherms and mechanism, Int. J. Environ. Res. Public Health, 15 (2018) 1321.
  68. T. Sumathi, G. Alagumuthu, Adsorption studies for arsenic removal using activated Moringa oleifera, Int. J. Chem. Eng., 2014 (2014) 6.
  69. E. Bazrafshan, F. Kord Mostafapour, S. Rahdar, A.H. Mahvi, Equilibrium and thermodynamics studies for decolorization of Reactive black 5 (RB5) by adsorption onto MWCNTs, Desal. Water Treat., 54 (2015) 2241–2251.
  70. V.K. Gupta, Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent, Ind. Eng. Chem. Res., 37 (1998) 192–202.
  71. N. Teutscherova, J. Houška, M. Navas, A. Masaguer, M. Benito, E. Vazquez, Leaching of ammonium and nitrate from acrisol and calcisol amended with holm oak biochar: a column study, Geoderma, 323 (2018) 136–145.
  72. P. Singh, S.K. Singh, J. Bajpai, A.K. Bajpai, R.B. Shrivastava, Iron crosslinked alginate as novel nanosorbents for removal of arsenic ions and bacteriological contamination from water, J. Mater. Res. Technol., 3 (2014) 195–202.
  73. K. Vijayaraghavan, J. Jegan, K. Palanivelu, M. Velan, Batch and column removal of copper from aqueous solution using a brown marine alga Turbinaria ornata, Chem. Eng. J., 106 (2005) 177–184.
  74. P.V. Nidheesh, R. Gandhimathi, S.T. Ramesh, T.S.A. Singh, Adsorption and desorption characteristics of crystal violet in bottom ash column, J. Urban Environ. Eng., 6 (2012) 18–29.
  75. A. Ahmad, B. Hameed, Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste, J. Hazard. Mater., 175 (2010) 298–303.
  76. S. Ghorai, K. Pant, Investigations on the column performance of fluoride adsorption by activated alumina in a fixed-bed, Chem. Eng. J., 98 (2004) 165–173.
  77. J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies, J. Hazard. Mater., 125 (2005) 211–220.
  78. H. Zeng, M. Arashiro, D.E. Giammar, Effects of water chemistry and flow rate on arsenate removal by adsorption to an iron oxide-based sorbent, Water Res., 42 (2008) 4629–4636.
  79. G. Ayoub, M. Mehawej, Adsorption of arsenate on untreated dolomite powder, J. Hazard. Mater., 148 (2007) 259–266.
  80. T. Padmesh, K. Vijayaraghavan, G. Sekaran, M. Velan, Biosorption of Acid blue 15 using fresh water macroalga Azolla filiculoides: batch and column studies, Dyes Pigm., 71 (2006) 77–82.
  81. I. Tan, A. Ahmad, B. Hameed, Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies, Desalination, 225 (2008) 13–28.
  82. Z. Asif, Z. Chen, Removal of arsenic from drinking water using rice husk, Appl. Water Sci., 7 (2017) 1449–1458.
  83. Z. Aksu, F. Gönen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochem., 39 (2004) 599–613.
  84. T. Padmesh, K. Vijayaraghavan, G. Sekaran, M. Velan, Batch and column studies on biosorption of acid dyes on fresh water macro alga Azolla filiculoides, J. Hazard. Mater., 125 (2005) 121–129.
  85. H. Patel, Fixed-bed column adsorption study: a comprehensive review, Appl. Water Sci., 9 (2019) 45.
  86. R. Senthilkumar, D. Reddy Prasad, L. Govindarajan, K. Saravanakumar, B. Naveen Prasad, Synthesis of green marine algalbased biochar for remediation of arsenic(V) from contaminated waters in batch and column mode of operation, Int. J. Phytorem., 22 (2020) 279–286.
  87. P.T.T. Nguyen, Y. Sanou, S. Pare, H.M. Bui, Removal of arsenic from groundwater using Lamdong laterite as a natural adsorbent, Pol. J. Environ. Stud., 29 (2020) 1305-1314.
  88. M.N. Haque, G. Morrison, G. Perrusquia, M. Gutierrez, A. Aguilera, I. Cano-Aguilera, J. Gardea-Torresdey, Characteristics of arsenic adsorption to sorghum biomass, J. Hazard. Mater., 145 (2007) 30–35.
  89. C.-C. Chen, Y.-C. Chung, Arsenic removal using a biopolymer chitosan sorbent, J. Environ. Sci. Health, Part A, 41 (2006) 645–658.
  90. S. Kundu, A. Gupta, As(III) removal from aqueous medium in fixed bed using iron oxide-coated cement (IOCC): experimental and modeling studies, Chem. Eng. J., 129 (2007) 123–131.
  91. S. Thanawatpoontawee, A. Imyim, N. Praphairaksit, Ironloaded zein beads as a biocompatible adsorbent for arsenic(V) removal, J. Ind. Eng. Chem., 43 (2016) 127–132.
  92. Y. Li, Y. Zhu, Z. Zhu, X. Zhang, D. Wang, L. Xie, Fixed-bed column adsorption of arsenic(V) by porous composite of magnetite/ hematite/carbon with eucalyptus wood microstructure, J. Environ. Eng. Landscape Manage., 26 (2018) 38–56.
  93. H.N. Nhat Ha, N.T. Kim Phuong, T. Boi An, N.T. Mai Tho, T. Ngoc Thang, B. Quang Minh, C. Van Du, Arsenate removal by layered double hydroxides embedded into spherical polymer beads: batch and column studies, J. Environ. Sci. Health, Part A Toxic/Hazard. Subst. Environ. Eng., 51 (2016) 403–413.