References

  1. M.A. Hashim, S. Mukhopadhyay, J.N. Sahu, B. Sengupta, Remediation technologies for heavy metal contaminated groundwater, J. Environ. Manage., 92 (2011) 2355–2388.
  2. A.A.H. Faisal, L.A. Naji, Simulation of ammonia nitrogen removal from simulated wastewater by sorption onto waste foundry sand using artificial neural network, Assoc. Arab Univ. J. Eng. Sci., 26 (2019) 28–34.
  3. T. Anitha, P. Senthil Kumar, K. Sathish Kumar, Synthesis of nano-sized chitosan blended polyvinyl alcohol for the removal of Eosin Yellow dye from aqueous solution, J. Water Process Eng., 13 (2016) 127–136.
  4. N.S. Shah, J.A. Khan, M. Sayed, Z. Ul Haq Khan, J. Iqbal, S. Arshad, M. Junaid, H.M. Khan, Synergistic effects of H2O2 and S2O82− in the gamma radiation induced degradation of congored dye: kinetics and toxicities evaluation, Sep. Purif. Technol., 233 (2020) 115966, https://doi.org/10.1016/j.seppur.2019.115966.
  5. D.N. Ahmed, L.A. Naji, A.A.H. Faisal, N. Al-Ansari, Mu. Naushad, Waste foundry sand/MgFe-layered double hydroxides composite material for efficient removal of Congo red dye from aqueous solution, Sci. Rep., 10 (2020) 2042.
  6. K. Balasubramani, N. Sivarajasekar, Mu. Naushad, Effective adsorption of antidiabetic pharmaceutical (metformin) from aqueous medium using graphene oxide nanoparticles: equilibrium and statistical modelling, J. Mol. Liq., 301 (2020) 112426, https://doi.org/10.1016/j.molliq.2019.112426.
  7. Mu. Naushad, G. Sharma, Z.A. Alothman, Photodegradation of toxic dye using Gum Arabic-crosslinked-poly(acrylamide)/ Ni(OH)2/FeOOH nanocomposites hydrogel, J. Cleaner Prod., 241 (2019) 118263, https://doi.org/10.1016/j.jclepro.2019.118263.
  8. P. Senthil Kumar, R.V. Abhinaya, K. Gayathri Lashmi, V. Arthi, R. Pavithra, V. Sathyaselvabala, S. Dinesh Kirupha, S. Sivanesan, Adsorption of methylene blue dye from aqueous solution by agricultural waste: equilibrium, thermodynamics, kinetics, mechanism and process design, Colloid J., 73 (2011) 651, https:// doi.org/10.1134/S1061933X11050061.
  9. R.K. Rajoriya, B. Prasad, I.M. Mishra, K.L. Wasewar, Adsorption of benzaldehyde on granular activated carbon: kinetics, equilibrium, and thermodynamic, Chem. Biochem. Eng. Q., 3 (2007) 219–226.
  10. G. Sharma, B. Thakur, A. Kumar, S. Sharma, Mu. Naushad, F.J. Stadler, Atrazine removal using chitin-cl-poly(acrylamideco- itaconic acid) nanohydrogel: isotherms and pH responsive nature, Carbohydr. Polym., 241 (2020) 116258, https://doi. org/10.1016/j.carbpol.2020.116258.
  11. H. Znad, K. Abbas, S. Hena, M.R. Awual, Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media, J. Environ. Chem. Eng., 6 (2018) 218–227.
  12. A.Z. Woinarski, G.W. Stevens, I. Snape, A natural zeolite permeable reactive barrier to treat heavy-metal contaminated waters in Antarctica: kinetic and fixed-bed studies, Process Saf. Environ. Prot., 84 (2006) 109–116.
  13. J. Dong, Y.S. Zhao, W.H. Zhang, M. Hong, Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater, J. Hazard. Mater., 161 (2009) 224–230.
  14. Y.-S. Han, T.J. Gallegos, A.H. Demond, K.F. Hayes, FeS-coated sand for removal of arsenic(III) under anaerobic conditions in permeable reactive barriers, Water Res., 45 (2011) 593–604.
  15. A.D. Henderson, A.H. Demond, Permeability of iron sulfide (FeS)-based materials for groundwater remediation, Water Res., 47 (2013) 1267–1276.
  16. G. Bartzas, K. Komnitsas, Solid phase studies and geochemical modelling of low-cost permeable reactive barriers, J. Hazard. Mater., 183 (2010) 301–308.
  17. L.A. Naji, S.H. Jassam, M.J. Yaseen, A.A.H. Faisal, N. Al-Ansari, Modification of Langmuir model for simulating initial pH and temperature effects on sorption process, Sep. Sci. Technol., (2019) 1–8. doi: 10.1080/01496395.2019.1655055.
  18. N. Saad, Z.T. Abd Ali, L.A. Naji, A.A.A.H. Faisal, N. Al-Ansari, Development of Bi-Langmuir model on the sorption of cadmium onto waste foundry sand: effects of initial pH and temperature, Environ. Eng. Res., 25 (2020) 677–684.
  19. A.A.H. Faisal, S.F.A. Al-Wakel, H.A. Assi, L.A. Naji, Mu. Naushad, Waterworks sludge-filter sand permeable reactive barrier for removal of toxic lead ions from contaminated groundwater, J. Water Process Eng., 33 (2020) 101112, https:// doi.org/10.1016/j.jwpe.2019.101112.
  20. F.-G. Simon, T. Meggyes, Removal of organic and inorganic pollutants from groundwater using permeable reactive barriers part 1. Treatment processes for pollutants, Land Contam. Reclam., 8 (2002) 103–116.
  21. G. Sharma, Mu. Naushad, Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/ zirconium oxide composite: isotherm and kinetic modelling, J. Mol. Liq., 310 (2020) 113025, https://doi.org/10.1016/j. molliq.2020.113025.
  22. Mu. Naushad, A.A. Alqadami, Z.A. AlOthman, I.H. Alsohaimi, M.S. Algamdi, A.M. Aldawsari, Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon, J. Mol. Liq., 293 (2019) 111442, https://doi.org/10.1016/j. molliq.2019.111442.
  23. V.K. Gupta, Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent, Ind. Eng. Chem. Res., 37 (1998) 192–202.
  24. L. Ćurković, Š. Cerjan-Stefanović, A. Rastovèan-Mioè, Batch Pb2+ and Cu2+ removal by electric furnace slag, Water Res., 35 (2001) 3436–3440.
  25. O. Duman, E. Ayranci, Adsorption characteristics of benzaldehyde, sulphanilic acid, and p-phenolsulfonate from water, acid, or base solutions onto activated carbon cloth, Sep. Sci. Technol., 41 (2006) 3673–3692.
  26. H. Shahbeig, N. Bagheri, S.A. Ghorbanian, A. Hallajisani, S. Poorkarimi, A new adsorption isotherm model of aqueous solutions on granular activated carbon, World J. Model. Simul., 9 (2013) 243–254.
  27. A.A.H. Faisal, S.S. Alquzweeni, L.A. Naji, Mu. Naushad, Predominant mechanisms in the treatment of wastewater due to interaction of benzaldehyde and iron slag byproduct, Int. J. Environ. Res. Public Health, 17 (2019) 226.
  28. D.M. Proctor, K.A. Fehling, E.C. Shay, J.L. Wittenborn, J.J. Green, C. Avent, R.D. Bigham, M. Connolly, B. Lee, T.O. Shepker, M.A. Zak, Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags, Environ. Sci. Technol., 34 (2000) 1576–1582.
  29. P.E. Tsakiridis, G.D. Papadimitriou, S. Tsivilis, C. Koroneos, Utilization of steel slag for Portland cement clinker production, J. Hazard. Mater., 152 (2008) 805–811.
  30. D.K. Jaiswal, A. Kumar, R.R. Yadav, Analytical solution to the one-dimensional advection-diffusion equation with temporally dependent coefficients, J. Water Resour. Prot., 3 (2011) 76–84.
  31. J.W. Delleur, The Handbook of Groundwater Engineering, CRC Press, Boca Raton, 1999.
  32. L. Ujfaludi, Longitudinal dispersion tests in non-uniform porous media, Hydrol. Sci. J., 31 (1986) 467–474.
  33. Q.Q. Chen, D.Q. Yin, S.J. Zhu, X.L. Hu, Adsorption of cadmium(II) on humic acid coated titanium dioxide, J. Colloid Interface Sci., 367 (2012) 241–248.
  34. J. Goel, K. Kadirvelu, C. Rajagopal, V. Kumar Garg, Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies, J. Hazard. Mater., 125 (2005) 211–220.
  35. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies, J. Hazard. Mater., 154 (2008) 337–346.
  36. D.C.K. Ko, J.F. Porter, G. McKay, Optimised correlations for the fixed-bed adsorption of metal ions on bone char, Chem. Eng. Sci., 55 (2000) 5819–5829.
  37. A.A.H. Faisal, M.M. Ibreesam, N. Al-Ansari, L.A. Naji, Mu. Naushad, T. Ahamad, COMSOL multiphysics 3.5a package for simulating the cadmium transport in the sand bed-bentonite low permeable barrier, J. King Saud Univ.-Sci., 32 (2020) 1944–1952.
  38. S. Kundu, A.K. Gupta, Investigations on the adsorption efficiency of iron oxide coated cement (IOCC) towards As(V) — kinetics, equilibrium and thermodynamic studies, Colloids Surf., A, 273 (2006) 121–128.