References

  1. H.F. Ridgway, J. Orbell, S. Gray, Molecular simulations of polyamide membrane materials used in desalination and water reuse applications: recent developments and future prospects, J. Membr. Sci., 524 (2017) 436–448.
  2. K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination-development to date and future potential, J. Membr. Sci., 370 (2011) 1–22.
  3. G.D. Kang, Y.M. Cao, Development of antifouling reverse osmosis membranes for water treatment: a review, Water Res., 46 (2012) 584–600.
  4. X.H. Ma, Z.K. Yao, Z. Yang, H. Guo, Z.L. Xu, C.Y. Tang, M. Elimelech, Nanofoaming of polyamide desalination membranes to tune permeability and selectivity, Environ. Sci. Technol. Lett., 5 (2018) 123–130.
  5. X.H. Ma, Z. Yang, Z.K. Yao, H. Guo, Z.L. Xu, C.Y. Tang, Interfacial polymerization with electrosprayed microdroplets: toward controllable and ultrathin polyamide membranes, Environ. Sci. Technol. Lett., 5 (2018) 117–122.
  6. M.J.T. Raaijmakers, N.E. Benes, Current trends in interfacial polymerization chemistry, Prog. Polym. Sci., 63 (2016) 86–142.
  7. X.H. Ma, H. Guo, Z. Yang, Z.K. Yao, W.H. Qing, Y.L. Chen, Z.L. Xu, C.Y. Tang, Carbon nanotubes enhance permeability of ultrathin polyamide rejection layers, J. Membr. Sci., 570–571 (2019) 139–145.
  8. X. Ma, Z. Yang, Z. Yao, H. Guo, Z. Xu, C.Y. Tang, Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance, J. Colloid Interface Sci., 540 (2019) 382–388.
  9. J.R. Werber, A. Deshmukh, M. Elimelech, The critical need for increased selectivity, not increased water permeability, for desalination membranes, Environ. Sci. Technol. Lett., 3 (2016) 112–120.
  10. G.R. Williams, D. O’Hare, Towards understanding, control and application of layered double hydroxide chemistry, J. Mater. Chem., 16 (2006) 3065–3074.
  11. Q. Wang, D. Ohare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets, Chem. Rev., 112 (2012) 4124–4155.
  12. Y. Liu, N. Wang, J. Caro, In situ formation of LDH membranes of different microstructures with molecular sieve gas selectivity, J. Mater. Chem. A, 2 (2014) 5716–5723.
  13. J. Wang, Y. Zhang, J. Zhu, J. Hou, J. Liu, B. Van der Bruggen, Zwitterionic functionalized layered double hydroxides nanosheets for a novel charged mosaic membrane with high salt permeability, J. Membr. Sci., 510 (2016) 27–37.
  14. Z. Shami, S.M. Amininasab, P. Shakeri, Structure-property relationships of nanosheeted 3D hierarchical roughness MgAllayered double hydroxide branched to an electrospun porous nanomembrane: a superior oil-removing nanofabric, ACS Appl. Mater. Interfaces, 8 (2016) 28964–28973.
  15. P. Lu, S. Liang, T. Zhou, X. Mei, Y. Zhang, C. Zhang, A. Umar, Q. Wang, Layered double hydroxide/graphene oxide hybrid incorporated polysulfone substrate for thinfilm nanocomposite forward osmosis membranes, RSC Adv., 6 (2016) 56599–56609.
  16. G. Li, Z. Song, W. Liu, D. Yu, H. Wang, Alkyl ketene dimer emulsions stabilized by layered double hydroxide particles modified with glutamic acid, Ind. Eng. Chem. Res., 56 (2017) 11435–11442.
  17. F. Yang, S. Liu, J. Xu, Q. Lan, F. Wei, D. Sun, Pickering emulsions stabilized solely by layered double hydroxides particles: the effect of salt on emulsion formation and stability, J. Colloid Interface Sci., 302 (2006) 159–169.
  18. S. Abend, G. Lagaly, Bentonite and double hydroxides as emulsifying agents, Clay Miner., 36 (2001) 557–570.
  19. X. Tian, J. Wang, H. Zhang, Z. Cao, M. Zhao, Y. Guan, Y. Zhang, Establishment of transport channels with carriers for water in reverse osmosis membrane by incorporating hydrotalcite into the polyamide layer, RSC Adv., 8 (2018) 12439–12448.
  20. J.A. Gursky, S.D. Blough, C. Luna, C. Gomez, A.N. Luevano, E.A. Gardner, Particle-particle interactions between layered double hydroxide nanoparticles, J. Am. Chem. Soc., 128 (2006) 8376–8377.
  21. P.M. Pardeshi, A.K. Mungray, A.A. Mungray, Polyvinyl chloride and layered double hydroxide composite as a novel substrate material for the forward osmosis membrane, Desalination, 421 (2017) 149–159.
  22. Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid, Carbon, 50 (2012) 4738–4743.
  23. W. Jia, B. Tang, P. Wu, Carbon dots with multi-functional groups and the application in proton exchange membranes, Electrochim. Acta, 260 (2018) 92–100.
  24. D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R.E. Haddad, H. Fan, Z. Sun, Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots, Sci. Rep., 4 (2014) 5294.
  25. S. Huang, X. Cen, H. Zhu, Z. Yang, Y. Yang, W.W. Tjiu, T. Liu, Facile preparation of poly(vinyl alcohol) nanocomposites with pristine layered double hydroxides, Mater. Chem. Phys., 130 (2011) 890–896.
  26. W. Liu, S. Xu, R. Liang, M. Wei, D.G. Evans, X. Duan, In situ synthesis of nitrogen-doped carbon dots in the interlayer region of a layered double hydroxide with tunable quantum yield, J. Mater. Chem. C, 5 (2017) 3536–3541.
  27. J. Liao, Z. Wang, C. Gao, M. Wang, K. Yan, X. Xie, S. Zhao, J. Wang, S. Wang, A high performance PVAm-HT membrane containing high-speed facilitated transport channels for CO2 separation, J. Mater. Chem. A, 3 (2015) 16746–16761.
  28. M.M. Kłosowski, C.M. McGilvery, Y. Li, P. Abellan, Q. Ramasse, J.T. Cabral, A.G. Livingston, A.E. Porter, Micro-to nano-scale characterisation of polyamide structures of the SW30HR RO membrane using advanced electron microscopy and stain tracers, J. Membr. Sci., 520 (2016) 465–476.
  29. T. Kamada, T. Ohara, T. Shintani, T. Tsuru, Optimizing the preparation of multi-layered polyamide membrane via the addition of a co-solvent, J. Membr. Sci., 453 (2014) 489–497.
  30. J. Xu, H. Yan, Y. Zhang, G. Pan, Y. Liu, The morphology of fullyaromatic polyamide separation layer and its relationship with separation performance of TFC membranes, J. Membr. Sci., 541 (2017) 174–188.
  31. V. Freger, Kinetics of film formation by interfacial polycondensation, Langmuir, 21 (2005) 1884–1894.
  32. T. Kamada, T. Ohara, T. Shintani, T. Tsuru, Controlled surface morphology of polyamide membranes via the addition of co-solvent for improved permeate flux, J. Membr. Sci., 467 (2014) 303–312.
  33. B. Khorshidi, T. Thundat, B.A. Fleck, M. Sadrzadeh, A novel approach toward fabrication of high performance thin film composite polyamide membranes, Sci. Rep., 6 (2016) 22069.
  34. B. Khorshidi, T. Thundat, D. Pernitsky, M. Sadrzadeh, A parametric study on the synergistic impacts of chemical additives on permeation properties of thin film composite polyamide membrane, J. Membr. Sci., 535 (2017) 248–257.